首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
The primary habitat of polar bears is sea ice, but in Western Hudson Bay (WH), the seasonal ice cycle forces polar bears ashore each summer. Survival of bears on land in WH is correlated with breakup and the ice‐free season length, and studies suggest that exceeding thresholds in these variables will lead to large declines in the WH population. To estimate when anthropogenic warming may have progressed sufficiently to threaten the persistence of polar bears in WH, we predict changes in the ice cycle and the sea ice concentration (SIC) in spring (the primary feeding period of polar bears) with a high‐resolution sea ice‐ocean model and warming forced with 21st century IPCC greenhouse gas (GHG) emission scenarios: B1 (low), A1B (medium), and A2 (high). We define critical years for polar bears based on proposed thresholds in breakup and ice‐free season and we assess when ice‐cycle conditions cross these thresholds. In the three scenarios, critical years occur more commonly after 2050. From 2001 to 2050, 2 critical years occur under B1 and A2, and 4 under A1B; from 2051 to 2100, 8 critical years occur under B1, 35 under A1B and 41 under A2. Spring SIC in WH is high (>90%) in all three scenarios between 2001 and 2050, but declines rapidly after 2050 in A1B and A2. From 2090 to 2100, the mean spring SIC is 84 (±7)% in B1, 56 (±26)% in A1B and 20 (±13)% in A2. Our predictions suggest that the habitat of polar bears in WH will deteriorate in the 21st century. Ice predictions in A1B and A2 suggest that the polar bear population may struggle to persist after ca. 2050. Predictions under B1 suggest that reducing GHG emissions could allow polar bears to persist in WH throughout the 21st century.  相似文献   

3.
Subpopulation growth rates and the probability of decline at current harvest levels were determined for 13 subpopulations of polar bears (Ursus maritimus) that are within or shared with Canada based on mark–recapture estimates of population numbers and vital rates, and harvest statistics using population viability analyses (PVA). Aboriginal traditional ecological knowledge (TEK) on subpopulation trend agreed with the seven stable/increasing results and one of the declining results, but disagreed with PVA status of five other declining subpopulations. The decline in the Baffin Bay subpopulation appeared to be due to over‐reporting of harvested numbers from outside Canada. The remaining four disputed subpopulations (Southern Beaufort Sea, Northern Beaufort Sea, Southern Hudson Bay, and Western Hudson Bay) were all incompletely mark–recapture (M‐R) sampled, which may have biased their survival and subpopulation estimates. Three of the four incompletely sampled subpopulations were PVA identified as nonviable (i.e., declining even with zero harvest mortality). TEK disagreement was nonrandom with respect to M‐R sampling protocols. Cluster analysis also grouped subpopulations with ambiguous demographic and harvest rate estimates separately from those with apparently reliable demographic estimates based on PVA probability of decline and unharvested subpopulation growth rate criteria. We suggest that the correspondence between TEK and scientific results can be used to improve the reliability of information on natural systems and thus improve resource management. Considering both TEK and scientific information, we suggest that the current status of Canadian polar bear subpopulations in 2013 was 12 stable/increasing and one declining (Kane Basin). We do not find support for the perspective that polar bears within or shared with Canada are currently in any sort of climate crisis. We suggest that monitoring the impacts of climate change (including sea ice decline) on polar bear subpopulations should be continued and enhanced and that adaptive management practices are warranted.  相似文献   

4.
Predicting the consequences of environmental changes, including human‐mediated climate change on species, requires that we quantify range‐wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations (n = 358) using 13,488 genome‐wide single nucleotide polymorphisms (SNPs) identified with double‐digest restriction site‐associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation. These data on the genetic structure of polar bears using SNPs provide a detailed baseline against which future shifts in population structure can be assessed, and opportunities to develop new noninvasive tools for monitoring polar bears across their range.  相似文献   

5.
Long-term warming of late spring (April–June) air temperatures has been proposed by Stirling et al. [Stirling, I., Lunn, N.J., Iacozza, J., 1999. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change. Arctic 52, 294–306] as the “ultimate” factor causing earlier sea-ice break-up around western Hudson Bay (WH) that has, in turn, led to the poorer physical and reproductive characteristics of polar bears occupying this region. Derocher et al. [Derocher, A.E., Lunn, N.J., Stirling, I., 2004. Polar bears in a warming climate. Integr. Comp. Biol. 44, 163–176] expanded the discussion to the whole circumpolar Arctic and concluded that polar bears will unlikely survive as a species should the computer-predicted scenarios for total disappearance of sea-ice in the Arctic come true. We found that spring air temperatures around the Hudson Bay basin for the past 70 years (1932–2002) show no significant warming trend and are more likely identified with the large-amplitude, natural climatic variability that is characteristic of the Arctic. Any role of external forcing by anthropogenic greenhouse gases remains difficult to identify. We argue, therefore, that the extrapolation of polar bear disappearance is highly premature. Climate models are simply not skilful for the projection of regional sea-ice changes in Hudson Bay or the whole Arctic. Alternative factors, such as increased human–bear interaction, must be taken into account in a more realistic study and explanation of the population ecology of WH polar bears. Both scientific papers and public discussion that continue to fail to recognize the inherent complexity in the adaptive interaction of polar bears with both human and nature will not likely offer any useful, science-based, preservation and management strategies for the species.  相似文献   

6.
《Ecological Complexity》2008,5(4):289-302
We address the three main issues raised by Stirling et al. [Stirling, I., Derocher, A.E., Gough, W.A., Rode, K., in press. Response to Dyck et al. (2007) on polar bears and climate change in western Hudson Bay. Ecol. Complexity]: (1) evidence of the role of climate warming in affecting the western Hudson Bay polar bear population, (2) responses to suggested importance of human–polar bear interactions, and (3) limitations on polar bear adaptation to projected climate change. We assert that our original paper did not provide any “alternative explanations [that] are largely unsupported by the data” or misrepresent the original claims by Stirling et al. [Stirling, I., Lunn, N.J., Iacozza, I., 1999. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic 52, 294–306], Derocher et al. [Derocher, A.E., Lunn, N.J., Stirling, I., 2004. Polar bears in a warming climate. Integr. Comp. Biol. 44, 163–176], and other peer-approved papers authored by Stirling and colleagues. In sharp contrast, we show that the conclusion of Stirling et al. [Stirling, I., Derocher, A.E., Gough, W.A., Rode, K., in press. Response to Dyck et al. (2007) on polar bears and climate change in western Hudson Bay. Ecol. Complexity] – suggesting warming temperatures (and other related climatic changes) are the predominant determinant of polar bear population status, not only in western Hudson (WH) Bay but also for populations elsewhere in the Arctic – is unsupportable by the current scientific evidence.The commentary by Stirling et al. [Stirling, I., Derocher, A.E., Gough, W.A., Rode, K., in press. Response to Dyck et al. (2007) on polar bears and climate change in western Hudson Bay. Ecol. Complexity] is an example of uni-dimensional, or reductionist thinking, which is not useful when assessing effects of climate change on complex ecosystems. Polar bears of WH are exposed to a multitude of environmental perturbations including human interference and factors (e.g., unknown seal population size, possible competition with polar bears from other populations) such that isolation of any single variable as the certain root cause (i.e., climate change in the form of warming spring air temperatures), without recognizing confounding interactions, is imprudent, unjustified and of questionable scientific utility. Dyck et al. [Dyck, M.G., Soon, W., Baydack, R.K., Legates, D.R., Baliunas, S., Ball, T.F., Hancock, L.O., 2007. Polar bears of western Hudson Bay and climate change: Are warming spring air temperatures the “ultimate” survival control factor? Ecol. Complexity, 4, 73–84. doi:10.1016/j.ecocom.2007.03.002] agree that some polar bear populations may be negatively impacted by future environmental changes; but an oversimplification of the complex ecosystem interactions (of which humans are a part) may not be beneficial in studying external effects on polar bears. Science evolves through questioning and proposing hypotheses that can be critically tested, in the absence of which, as Krebs and Borteaux [Krebs, C.J., Berteaux, D., 2006. Problems and pitfalls in relating climate variability to population dynamics. Clim. Res. 32, 143–149] observe, “we will be little more than storytellers.”  相似文献   

7.
Among polar bears (Ursus maritimus), fitness is dependent on body size through males’ abilities to win mates, females’ abilities to provide for their young and all bears’ abilities to survive increasingly longer fasting periods caused by climate change. In the Western Hudson Bay subpopulation (near Churchill, Manitoba, Canada), polar bears have declined in body size and condition, but nothing is known about the genetic underpinnings of body size variation, which may be subject to natural selection. Here, we combine a 4449‐individual pedigree and an array of 5,433 single nucleotide polymorphisms (SNPs) to provide the first quantitative genetic study of polar bears. We used animal models to estimate heritability (h2) among polar bears handled between 1966 and 2011, obtaining h2 estimates of 0.34–0.48 for strictly skeletal traits and 0.18 for axillary girth (which is also dependent on fatness). We genotyped 859 individuals with the SNP array to test for marker–trait association and combined p‐values over genetic pathways using gene‐set analysis. Variation in all traits appeared to be polygenic, but we detected one region of moderately large effect size in body length near a putative noncoding RNA in an unannotated region of the genome. Gene‐set analysis suggested that variation in body length was associated with genes in the regulatory cascade of cyclin expression, which has previously been associated with body size in mice. A greater understanding of the genetic architecture of body size variation will be valuable in understanding the potential for adaptation in polar bear populations challenged by climate change.  相似文献   

8.
Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice‐free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior.  相似文献   

9.
The development of novel biomarkers to help assess whether polar bear (Ursus maritimus) health is impacted by long-term physiological stress associated with climate change represents an emerging area of research. Reductions in sea ice cover and food availability are potentially stressful, and chronic stress can have deleterious effects that may impair individual and population level health. Cortisol is the principal effector hormone of the stress response and has previously been linked to aspects of polar bear life history (e.g., reproduction and growth) known to be negatively influenced by environmental change. Understanding stress is important for polar bears at the southern limit of their range, such as those in Western Hudson Bay (WH), where rapidly changing sea ice phenology threatens population viability. We examined the relationships between age, reproductive status, and body condition (fatness) and hair cortisol concentration (HCC) in 729 polar bear hair samples collected in WH from 2004–2013. Overall, there was a negative relationship between fatness and HCC, suggesting that bears in poorer body condition experienced higher levels of stress. However, when reproductive status was included in our analysis, this relationship only held for male and lone female bears. Females with dependent offspring had consistently low fatness and elevated HCC, likely because of the high cost of maternal care. We also found a positive correlation between HCC and age for: (1) bears in poor body condition, possibly due to nutritional stress compounding effects of aging; and (2) male bears, potentially due to stress and injury associated with intrasexual mate competition. These findings support the use of HCC as a biomarker for polar bear health. Furthermore, we have established a HCC benchmark against which future population-level effects of climate change in WH polar bears can be compared.  相似文献   

10.
Climate‐driven sea ice loss has led to changes in the timing of key biological events in the Arctic, however, the consequences and rate of these changes remain largely unknown. Polar bears (Ursus maritimus) undergo seasonal changes in energy stores in relation to foraging opportunities and habitat conditions. Declining sea ice has been linked to reduced body condition in some subpopulations, however, the specific timing and duration of the feeding period when bears acquire most of their energy stores and its relationship to the timing of ice break‐up is poorly understood. We used community‐based sampling to investigate seasonality in body condition (energy stores) of polar bears in Nunavut, Canada, and examined the influence of sea ice variables. We used adipose tissue lipid content as an index of body condition for 1,206 polar bears harvested from 2010–2017 across five subpopulations with varying seasonal ice conditions: Baffin Bay (October–August), Davis Strait and Foxe Basin (year‐round), Gulf of Boothia and Lancaster Sound (August–May). Similar seasonal patterns were found in body condition across subpopulations with bears at their nadir of condition in the spring, followed by fat accumulation past break‐up date and subsequent peak body condition in autumn, indicating that bears are actively foraging in late spring and early summer. Late season feeding implies that even minor advances in the timing of break‐up may have detrimental effects on foraging opportunities, body condition, and subsequent reproduction and survival. The magnitude of seasonal changes in body condition varied across the study area, presumably driven by local environmental conditions. Our results demonstrate how community‐based monitoring of polar bears can reveal population‐level responses to climate warming in advance of detectable demographic change. Our data on the seasonal timing of polar bear foraging and energy storage should inform predictive models of the effects of climate‐mediated sea ice loss.  相似文献   

11.
Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze‐up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long‐term survival. To maintain viable subpopulations, polar bears depend on sea ice as a platform from which to hunt seals for long enough each year to accumulate sufficient energy (fat) to survive periods when seals are unavailable. Less time to access to prey, because of progressively earlier breakup in spring, when newly weaned ringed seal (Pusa hispida) young are available, results in longer periods of fasting, lower body condition, decreased access to denning areas, fewer and smaller cubs, lower survival of cubs as well as bears of other age classes and, finally, subpopulation decline toward eventual extirpation. The chronology of climate‐driven changes will vary between subpopulations, with quantifiable negative effects being documented first in the more southerly subpopulations, such as those in Hudson Bay or the southern Beaufort Sea. As the bears' body condition declines, more seek alternate food resources so the frequency of conflicts between bears and humans increases. In the most northerly areas, thick multiyear ice, through which little light penetrates to stimulate biological growth on the underside, will be replaced by annual ice, which facilitates greater productivity and may create habitat more favorable to polar bears over continental shelf areas in the short term. If the climate continues to warm and eliminate sea ice as predicted, polar bears will largely disappear from the southern portions of their range by mid‐century. They may persist in the northern Canadian Arctic Islands and northern Greenland for the foreseeable future, but their long‐term viability, with a much reduced global population size in a remnant of their former range, is uncertain.  相似文献   

12.
《Ecological Complexity》2008,5(3):193-201
The “viewpoint” article by Dyck et al. (2007) [Dyck. M.G., Soon, W., Baydack, R.K., Legates, D.R., Baliunas, S., Ball, T.F., Hancock, L.O., 2007. Polar bears of western Hudson Bay and climate change: are warming spring air temperatures the “ultimate” survival control factor? Ecol. Complexity 4, 73–84. doi:10.1016/j.ecocom.2007.03.002.] suggest that factors other than climate warming are responsible for a decline in the polar bear population of Western Hudson Bay. They propose: (1) that there is no evidence that the climate has warmed significantly in western Hudson Bay, (2) that any negative effects on the polar bear population likely result from interactions with humans (such as research activities, management actions, or tourism), (3) that studies suggesting climate warming could influence polar bear populations are confounded by natural fluctuations and (4) that polar bears will adapt to climate warming by eating vegetation, hunting other marine mammal species, and evolving new physiological mechanisms. In our examination of their alternative explanations, and the data available to evaluate each, we found little support for any.Research conducted since 1997 (when the last data were collected for the analyses in Stirling et al., 1999 [Stirling, I., Lunn, N.J., Iacozza, J., 1999. Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climate change. Arctic 52, 294–306.]) continues to be consistent with the thesis that climate warming in western Hudson Bay is the major factor causing the sea ice to breakup at progressively earlier dates, resulting in polar bears coming ashore to fast for several months in progressively poorer condition, resulting in negative affects on survival of young, subadult, and older (but not prime) adults and reproduction. When the population began to decline, the hunting quota for Inuit in Nunavut was no longer sustainable, which in turn probably resulted in the decline accelerating over time as a result of overharvesting (Regehr et al., 2007 [Regehr, E.V., Lunn, N.J., Amstrup, S.C., Stirling, I., 2007. Survival and population size of polar bears in western Hudson Bay in relation to earlier sea ice breakup. J. Wildl. Manage. 71, 2673–2683.]).  相似文献   

13.
ABSTRACT Some of the most pronounced ecological responses to climatic warming are expected to occur in polar marine regions, where temperature increases have been the greatest and sea ice provides a sensitive mechanism by which climatic conditions affect sympagic (i.e., with ice) species. Population-level effects of climatic change, however, remain difficult to quantify. We used a flexible extension of Cormack-Jolly-Seber capture-recapture models to estimate population size and survival for polar bears (Ursus maritimus), one of the most ice-dependent of Arctic marine mammals. We analyzed data for polar bears captured from 1984 to 2004 along the western coast of Hudson Bay and in the community of Churchill, Manitoba, Canada. The Western Hudson Bay polar bear population declined from 1,194 (95% CI = 1,020-1,368) in 1987 to 935 (95% CI = 794-1,076) in 2004. Total apparent survival of prime-adult polar bears (5–19 yr) was stable for females (0.93; 95% CI = 0.91-0.94) and males (0.90; 95% CI = 0.88-0.91). Survival of juvenile, subadult, and senescent-adult polar bears was correlated with spring sea ice breakup date, which was variable among years and occurred approximately 3 weeks earlier in 2004 than in 1984. We propose that this correlation provides evidence for a causal association between earlier sea ice breakup (due to climatic warming) and decreased polar bear survival. It may also explain why Churchill, like other communities along the western coast of Hudson Bay, has experienced an increase in human-polar bear interactions in recent years. Earlier sea ice breakup may have resulted in a larger number of nutritionally stressed polar bears, which are encroaching on human habitations in search of supplemental food. Because western Hudson Bay is near the southern limit of the species' range, our findings may foreshadow the demographic responses and management challenges that more northerly polar bear populations will experience if climatic warming in the Arctic continues as projected.  相似文献   

14.
One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.  相似文献   

15.
The cumulative effect of individual‐level foraging patterns may have important consequences for ecosystem functioning, population dynamics and conservation. Dietary specialization, whereby an individual exploits a subset of resources available to the rest of the population, can develop in response to environmental or intrinsic population factors. However, accurate assessment of individual diets may be difficult because analyses of recent food intake may misrepresent foraging variability within a heterogeneous environment. We used quantitative fatty acid signature analysis (QFASA) and a novel index of longitudinal dietary change to examine the individual foraging patterns of 64 polar bears Ursus maritimus successively sampled in Western and Southern Hudson Bay between 1994–2003. Estimated diets varied between and within age and sex classes, with adult male polar bears consuming significantly more bearded seal Erignathus barbatus than adult female or subadult bears, whose diets were dominated by ringed seal Pusa hispida. Among individual adult males, consumption of bearded seal accounted for 0–98% of the diet and bearded seal consumption was positively correlated with individual dietary specialization, as measured by proportional similarity (PSi) to the rest of the population. Most individual diets were consistent from year‐to‐year and were therefore not a product of short‐term heterogeneity in prey distribution. However, a novel dietary change index indicated that adult male polar bears had the most temporally variable diets with 23% of adult males switching their diet from predominantly ringed seal to predominantly bearded seal or vice versa. We conclude that QFASA is well‐suited to analyses of individual‐level foraging because it reflects an animal's diet over the preceding weeks to months. The subpopulations of bears in this study were near the southern limit of their species range and have experienced negative individual‐ and population‐level impacts related to sea ice loss and climate warming. The tightly constrained diets of some individuals, particularly adult females and subadults, may make them especially sensitive to future climate change.  相似文献   

16.
Nine bowhead whales (Balaena mysticetus) were instrumented with satellite transmitters in West Greenland in May 2002 and 2003. Transmitters were either encased in steel cans or imbedded in floats attached to wires. Transmitters mounted in steel cans had a high initial failure rate, yet those that were successful provided tracking durations up to seven months. Float tags had a low initial failure rate and initially provided large numbers of positions; however, they had deployment durations of only 2–33 d. All tracked whales departed from West Greenland and headed northwest towards Lancaster Sound in the end of May. Three tags with long tracking durations (197–217 d) recorded movements of whales (1 ♂, 2 ♀) into December in 2002 and 2003. All of these individuals remained within the Canadian High Arctic or along the east coast of Baffin Island in summer and early fall. By the end of October, all three whales moved rapidly south along the east coast of Baffin Island and entered Hudson Strait, an apparent wintering ground for the population. One of the whales did not visit Isabella Bay on east Baffin Island, the locality used for abundance estimation from photographic reidentification of individuals. The movements of whales tagged in this study raise critical questions about the assumed stock discreteness of bowhead whales in Foxe Basin, Hudson Strait, and Davis Strait and indicate current estimates of abundance are negatively biased.  相似文献   

17.
Studies of population dynamics, movement patterns and animal behavior usually require identification of individuals. We evaluated the reliability of using whisker spot patterns to noninvasively identify individual polar bears Ursus maritimus . We obtained the locations of polar bear whisker spots from photographs taken in western Hudson Bay, tested the independence of spot locations, estimated the complexity of each spot pattern in terms of information and determined whether each whisker spot pattern was reliable from its information content. Of the 50 whisker spot patterns analyzed, 98% contained enough information to be reliable, and this result varied little among observers. Photographs taken <50 m from polar bears were most useful. Our results suggest that individual identification of polar bears in the field based on whisker spot pattern variations is reliable. Researchers studying polar bear behavior or estimating population parameters can benefit from this method if proximity to the bears is feasible.  相似文献   

18.
Climate change is expected to result in range shifts and habitat fragmentation for many species. In the Arctic, loss of sea ice will reduce barriers to dispersal or eliminate movement corridors, resulting in increased connectivity or geographic isolation with sweeping implications for conservation. We used satellite telemetry, data from individually marked animals (research and harvest), and microsatellite genetic data to examine changes in geographic range, emigration, and interpopulation connectivity of the Baffin Bay (BB) polar bear (Ursus maritimus) subpopulation over a 25‐year period of sea‐ice loss. Satellite telemetry collected from n = 43 (1991–1995) and 38 (2009–2015) adult females revealed a significant contraction in subpopulation range size (95% bivariate normal kernel range) in most months and seasons, with the most marked reduction being a 70% decline in summer from 716,000 km2 (SE 58,000) to 211,000 km2 (SE 23,000) (p < .001). Between the 1990s and 2000s, there was a significant shift northward during the on‐ice seasons (2.6° shift in winter median latitude, 1.1° shift in spring median latitude) and a significant range contraction in the ice‐free summers. Bears in the 2000s were less likely to leave BB, with significant reductions in the numbers of bears moving into Davis Strait (DS) in winter and Lancaster Sound (LS) in summer. Harvest recoveries suggested both short and long‐term fidelity to BB remained high over both periods (83–99% of marked bears remained in BB). Genetic analyses using eight polymorphic microsatellites confirmed a previously documented differentiation between BB, DS, and LS; yet weakly differentiated BB from Kane Basin (KB) for the first time. Our results provide the first multiple lines of evidence for an increasingly geographically and functionally isolated subpopulation of polar bears in the context of long‐term sea‐ice loss. This may be indicative of future patterns for other polar bear subpopulations under climate change.  相似文献   

19.
As climate change advances the date of spring breakup in Hudson Bay, polar bears are coming ashore earlier. Since they would have lost some of their opportunities to hunt ringed seals from a sea ice platform, they may be deficient in energy. Subadult polar bears appear to come ashore before more mature individuals and the earliest subadults are beginning to overlap the nesting period of the large colony of snow geese also occupying the Cape Churchill Peninsula. The eggs these bears are known to eat could make up some of their energy shortfall. The earlier these eggs are consumed during the snow goose nesting period, the greater would be the energy that is available. Recent studies have shown that the annual survival rate for subadult bears declined in contrast to that of prime aged individuals. If this reduction in survival is related to an increasing energy deficit, as suggested by some, the consumption of goose eggs may reverse the trend and help stabilize the population, at least for some period of time. The total number of polar bears that could benefit from this resource will depend on the increasing temporal overlap with the nesting period and on the foraging behaviors of individuals eating the eggs. It is likely that other food sources will also have to play a role if the polar bears are to persist.  相似文献   

20.
Over the last few decades, the period of ice cover in Hudson Bay has decreased, owing to climate warming, with breakup occurring approximately 3 weeks earlier than it did 30 years ago. The trend towards lengthening of the open water season has led to speculation that ringed seal numbers would decline, but then harbour seals might become numerous enough to replace ringed seals in the diet of polar bears. The movement patterns of 18 harbour seals equipped with satellite-linked transmitters in the Churchill River estuary (western Hudson Bay) were examined, as well as the dive behaviour of 11 of these seals. During the ice-free period, seals followed a general central place-foraging strategy, making repeated trips between their haul-out site in the Churchill River estuary and nearshore areas (<20 km) near the river mouth and estuary. Seal behaviour changed significantly as ice started to form along the coast of western Hudson Bay: animals remained significantly farther from the Churchill River haul-out site and from the coast and performed longer and deeper dives. However, throughout the entire tracking period, whether ice was present or not, all animals restricted their movements to a narrow band of shallow coastal waters (<50 m depth) along a 600-km stretch of the western Hudson Bay coastline, centred on the Churchill River estuary haul-out site. This natural self-limitation to nearshore shallow waters could restrict the potential for the population to increase in size and replace ringed seals as a primary energy resource for polar bears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号