首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual selection is widely hypothesized to facilitate the evolution of reproductive isolation through divergence in sexual traits and sexual trait preferences among populations. However, direct evidence of divergent sexual selection causing intraspecific trait divergence remains limited. Using the wolf spider Schizocosa crassipes, we characterized patterns of female mate choice within and among geographic locations and related those patterns to geographic variation in male display traits to test whether divergent sexual selection caused by mate choice explains intraspecific trait variation. We found evidence of phenotypic selection on male behavior arising from female mate choice, but no evidence that selection varied among locations. Only those suites of morphological and behavioral traits that did not influence mate choice varied geographically. These results are inconsistent with ongoing divergent sexual selection underlying the observed intraspecific divergence in male display traits. These findings align with theory on the potentially restrictive conditions under which divergent sexual selection may persist, and suggest that long‐term studies capable of detecting periodic or transient divergent sexual selection will be critical to rigorously assess the relative importance of divergent sexual selection in intraspecific trait divergence.  相似文献   

2.
Genetic studies of secondary sexual traits provide insights into whether and how selection drove their divergence among populations, and these studies often focus on the fraction of variation attributable to genes on the X‐chromosome. However, such studies may sometimes misinterpret the amount of variation attributable to the X‐chromosome if using only simple reciprocal F1 crosses, or they may presume sexual selection has affected the observed phenotypic variation. We examined the genetics of a secondary sexual trait, male sex comb size, in Drosophila subobscura. This species bears unusually large sex combs for its species group, and therefore, this trait may be a good candidate for having been affected by natural or sexual selection. We observed significant heritable variation in number of teeth of the distal sex comb across strains. While reciprocal F1 crosses seemed to implicate a disproportionate X‐chromosome effect, further examination in the F2 progeny showed that transgressive autosomal effects inflated the estimate of variation associated with the X‐chromosome in the F1. Instead, the X‐chromosome appears to confer the smallest contribution of all major chromosomes to the observed phenotypic variation. Further, we failed to detect effects on copulation latency or duration associated with the observed phenotypic variation. Overall, this study presents an examination of the genetics underlying segregating phenotypic variation within species and illustrates two common pitfalls associated with some past studies of the genetic basis of secondary sexual traits.  相似文献   

3.
Studying the genetic architecture of sexual traits provides insight into the rate and direction at which traits can respond to selection. Traits associated with few loci and limited genetic and phenotypic constraints tend to evolve at high rates typically observed for secondary sexual characters. Here, we examined the genetic architecture of song traits and female song preferences in the field crickets Gryllus rubens and Gryllus texensis. Song and preference data were collected from both species and interspecific F1 and F2 hybrids. We first analysed phenotypic variation to examine interspecific differentiation and trait distributions in parental and hybrid generations. Then, the relative contribution of additive and additive‐dominance variation was estimated. Finally, phenotypic variance–covariance ( P ) matrices were estimated to evaluate the multivariate phenotype available for selection. Song traits and preferences had unimodal trait distributions, and hybrid offspring were intermediate with respect to the parents. We uncovered additive and dominance variation in song traits and preferences. For two song traits, we found evidence for X‐linked inheritance. On the one hand, the observed genetic architecture does not suggest rapid divergence, although sex linkage may have allowed for somewhat higher evolutionary rates. On the other hand, P matrices revealed that multivariate variation in song traits aligned with major dimensions in song preferences, suggesting a strong selection response. We also found strong covariance between the main traits that are sexually selected and traits that are not directly selected by females, providing an explanation for the striking multivariate divergence in male calling songs despite limited divergence in female preferences.  相似文献   

4.
How selection pressures acting within species interact with developmental constraints to shape macro‐evolutionary patterns of species divergence is still poorly understood. In particular, whether or not sexual selection affects evolutionary allometry, the increase in trait size with body size across species, of secondary sexual characters, remains largely unknown. In this context, bovid horn size is an especially relevant trait to study because horns are present in both sexes, but the intensity of sexual selection acting on them is expected to vary both among species and between sexes. Using a unique data set of sex‐specific horn size and body mass including 91 species of bovids, we compared the evolutionary allometry between horn size and body mass between sexes while accounting for both the intensity of sexual selection and phylogenetic relationship among species. We found a nonlinear evolutionary allometry where the allometric slope decreased with increasing species body mass. This pattern, much more pronounced in males than in females, suggests either that horn size is limited by some constraints in the largest bovids or is no longer the direct target of sexual selection in very large species.  相似文献   

5.
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.  相似文献   

6.
A key question in evolutionary biology is how intraspecific variation biases the evolution of a population and its divergence from other populations. Such constraints potentially limit the extent to which populations respond to selection, but may endure long enough to have macroevolutionary consequences. Previous studies have focused on the association between covariation patterns and divergence among isolated populations. Few have focused on geographic variation among semi‐connected populations, however, even though this may be indicative of early selective pressures that could lead to long‐term divergence and speciation. Here, we test whether covariation in the shape of the carapace of fiddler crabs (genus Uca Leach, 1814) is important for structuring geographic variation. We find that morphological divergence among populations is associated with evolvability in the direction of divergence in only a few species. The shape of the ancestral covariation matrix in these species differs from other species in having notably more variation concentrated along fewer directions (i.e. higher eccentricity). For most species, there is some evidence that covariation has constrained the range of directions into which populations have diverged but not the degree of divergence. These results suggest that even though fiddler crab populations have diverged morphologically in directions predicted by covariation, constraints on the extent to which divergence has occurred may only be manifested in species where variation patterns are eccentric enough to limit populations’ ability to respond effectively in many directions.  相似文献   

7.
Definitions of macroevolution fall into three categories: (1) evolution of taxa of supraspecific rank; (2) evolution on the grand time-scale; and (3) evolution that is guided by sorting of interspecific variation (as opposed to sorting of intraspecific variation in microevolution). Here, it is argued that only definition 3 allows for a consistent separation of macroevolution and microevolution. Using this definition, speciation has both microevolutionary and macroevolutionary aspects: the process of morphological transformation is microevolutionary, but the variation among species that it produces is macroevolutionary, as is the rate at which speciation occurs. Selective agents may have differential effects on intraspecific and interspecific variation, with three possible situations: effect at one level only, effect at both levels with the same polarity but potentially different intensity, and effects that oppose between levels. Whereas the impact of all selective agents is direct in macroevolution, microevolution requires intraspecific competition as a mediator between selective agents and evolutionary responses. This mediating role of intraspecific competition occurs in the presence of sexual reproduction and has therefore no analogue at the macroevolutionary level where species are the evolutionary units. Competition between species manifests both on the microevolutionary and macroevolutionary level, but with different effects. In microevolution, interspecific competition spurs evolutionary divergence, whereas it is a potential driver of extinction at the macroevolutionary level. Recasting the Red Queen hypothesis in a macroevolutionary framework suggests that the effects of interspecific competition result in a positive correlation between origination and extinction rates, confirming empirical observations herein referred to as Stanley's rule.  相似文献   

8.
The unique aspects of speciation and divergence in peripheral populations have long sparked much research. Unidirectional migration, received by some peripheral populations, can hinder the evolution of distinct differences from their founding populations. Here, we explore the effects that sexual selection, long hypothesized to drive the divergence of distinct traits used in mate choice, can play in the evolution of such traits in a partially isolated peripheral population. Using population genetic continent‐island models, we show that with phenotype matching, sexual selection increases the frequency of an island‐specific mating trait only when female preferences are of intermediate strength. We identify regions of preference strength for which sexual selection can instead cause an island‐specific trait to be lost, even when it would have otherwise been maintained at migration‐selection balance. When there are instead separate preference and trait loci, we find that sexual selection can lead to low trait frequencies or trait loss when female preferences are weak to intermediate, but that sexual selection can increase trait frequencies when preferences are strong. We also show that novel preference strengths almost universally cannot increase, under either mating mechanism, precluding the evolution of premating isolation in peripheral populations at the early stages of species divergence.  相似文献   

9.
Different structures may compete during development for a shared and limited pool of resources to sustain growth and differentiation. The resulting resource allocation trade-offs have the potential to alter both ontogenetic outcomes and evolutionary trajectories. However, little is known about the evolutionary causes and consequences of resource allocation trade-offs in natural populations. Here, we explore the significance of resource allocation trade-offs between primary and secondary sexual traits in shaping early morphological divergences between four recently separated populations of the horned beetle Onthophagus taurus as well as macroevolutionary divergence patterns across 10 Onthophagus species. We show that resource allocation trade-offs leave a strong signature in morphological divergence patterns both within and between species. Furthermore, our results suggest that genital divergence may, under certain circumstances, occur as a byproduct of evolutionary changes in secondary sexual traits. Given the importance of copulatory organ morphology for reproductive isolation our findings begin to raise the possibility that secondary sexual trait evolution may promote speciation as a byproduct. We discuss the implications of our results on the causes and consequences of resource allocation trade-offs in insects.  相似文献   

10.
Evolution is a fundamentally population level process in which variation, drift and selection produce both temporal and spatial patterns of change. Statistical model fitting is now commonly used to estimate which kind of evolutionary process best explains patterns of change through time using models like Brownian motion, stabilizing selection (Ornstein–Uhlenbeck) and directional selection on traits measured from stratigraphic sequences or on phylogenetic trees. But these models assume that the traits possessed by a species are homogeneous. Spatial processes such as dispersal, gene flow and geographical range changes can produce patterns of trait evolution that do not fit the expectations of standard models, even when evolution at the local‐population level is governed by drift or a typical OU model of selection. The basic properties of population level processes (variation, drift, selection and population size) are reviewed and the relationship between their spatial and temporal dynamics is discussed. Typical evolutionary models used in palaeontology incorporate the temporal component of these dynamics, but not the spatial. Range expansions and contractions introduce rate variability into drift processes, range expansion under a drift model can drive directional change in trait evolution, and spatial selection gradients can create spatial variation in traits that can produce long‐term directional trends and punctuation events depending on the balance between selection strength, gene flow, extirpation probability and model of speciation. Using computational modelling that spatial processes can create evolutionary outcomes that depart from basic population‐level notions from these standard macroevolutionary models.  相似文献   

11.
The present study examined how competitive interactions and environmental conditions generate species boundaries and determine species distributions. A spatially explicit, quantitative genetic, two-species competition model was used to manipulate the strengths of competition, gene flow and local adaptation along environmental gradients. This allowed us to assess the long-term persistence of each species and whether the ranges they inhabited had boundaries in space or were unlimited. We found that a species boundary arises along less steep environmental gradients when the strength of stabilizing selection and diversifying selection are similar. We also found that a species boundary may arise along shallow environmental gradients if interspecific competition is more intense than intraspecific, which relaxes previous requirements for steep gradients for generating range limits. We determined an analytical form for the critical environmental gradient as a function of ecological and genetic parameters at which a species boundary is expected to arise by competition. Results suggest an alternative to resource competition as an explanation for phenotypic divergence between sympatric competitors. Competitors sharing a trait that is under stabilizing selection along an environmental gradient may segregate spatially and evolve in different regions, with phenotypic sympatric divergence reflecting the resulting clines. Along various types of environmental gradients, variation in stabilizing selection intensities could lead to contrasting patterns in the distribution of species. For stabilizing selection strengths in accord with field data estimates, this study predicts that the level of sympatric character divergence would be limited along environmental gradients.  相似文献   

12.
Asexuality is rare in animals in spite of its apparent advantage relative to sexual reproduction, indicating that it must be associated with profound costs [1-9]. One expectation is that reproductive advantages gained by new asexual lineages will be quickly eroded over time [3, 5-7]. Ancient asexual taxa that have evolved and adapted without sex would be "scandalous" exceptions to this rule, but it is often difficult to exclude the possibility that putative asexuals deploy some form of "cryptic" sex, or have abandoned sex more recently than estimated from divergence times to sexual relatives [10]. Here we provide evidence, from high intraspecific divergence of mitochondrial sequence and nuclear allele divergence patterns, that several independently derived Timema stick-insect lineages have persisted without recombination for more than a million generations. Nuclear alleles in the asexual lineages displayed significantly higher intraindividual divergences than in related sexual species. In addition, within two asexuals, nuclear allele phylogenies suggested the presence of two clades, with sequences from the same individual appearing in both clades. These data strongly support ancient asexuality in Timema and validate the genus as an exceptional opportunity to attack the question of how asexual reproduction can be maintained over long periods of evolutionary time.  相似文献   

13.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

14.
Microevolutionary studies have demonstrated sexually antagonistic selection on sexual traits, and existing evidence supports a macroevolutionary pattern of sexually antagonistic coevolution. Two current questions are how antagonistic selection within-populations scales to divergence among populations, and to what extent intraspecific divergence matches species-level patterns. To address these questions, we conducted an intraspecific comparative study of sexual armaments and mating behaviors in a water strider (Gerris incognitus) in which male genitals grasp resistant females and female abdominal structures help ward off males. The degree of exaggeration of these armaments coevolves across species. We found a similar strong pattern of antagonistic coevolution among populations, suggesting that sexual conflict drives population differentiation in morphology. Furthermore, relative exaggeration in armaments was closely related to mating outcomes in a common environment. Interestingly, the effect of armaments on mating was mediated by population sexual size dimorphism. When females had a large size advantage, mating activity was low and independent of armaments, but when males had a relative size advantage, mating activity depended on which sex had relatively exaggerated armaments. Thus, a strong signal of sexually antagonistic coevolution is apparent even among populations. These results open opportunities to understand links between sexual arms races, ecological variation, and reproductive isolation.  相似文献   

15.
Theory predicts that both stabilising selection and diversifying selection jointly contribute to the evolution of sexual signalling traits by (1) maintaining the integrity of communication signals within species and (2) promoting the diversification of traits among lineages. However, for many important signalling traits, little is known about whether these dynamics translate into predictable macroevolutionary signatures. Here, we test for macroevolutionary patterns consistent with sexual signalling theory in the perfume signals of neotropical orchid bees, a group well studied for their chemical sexual communication. Our results revealed both high species‐specificity and elevated rates of evolution in perfume signals compared to nonsignalling traits. Perfume complexity was correlated with the number of congeners in a species’ range, suggesting that perfume evolution may be tied to the remarkably high number of orchid bee species coexisting together in some neotropical communities. Finally, sister‐pair comparisons were consistent with both rapid divergence at speciation and character displacement upon secondary contact. Together, our results provide new insight into the macroevolution of sexual signalling in insects.  相似文献   

16.
Identifying the factors generating ecomorphological diversity within species can provide a window into the nascent stages of ecological radiation. Sexual dimorphism is an obvious axis of intraspecific morphological diversity that could affect how environmental variation leads to ecological divergence among populations. In this paper we test for sex‐specific responses in how environmental variation generates phenotypic diversity within species, using the generalist lizard Gallotia galloti on Tenerife (Canary Islands). We evaluate two hypotheses: the first proposes that different environments have different phenotypic optima, leading to shifts in the positions of populations in morphospace between environments; the second posits that the strength of trait‐filtering differs between environments, predicting changes in the volume of morphospace occupied by populations in different environments. We found that intraspecific morphological diversity, provided it is adaptive, arises from both shifts in populations’ position in morphospace and differences in the strength of environmental filtering among environments, especially at high elevations. However, effects were found only in males; morphological diversity of females responded little to environmental variation. These results within G. galloti suggest natural selection is not the sole source of phenotypic diversity across environments, but rather that variation in the strength of, or response to, sexual selection may play an important role in generating morphological diversity in environmentally diverse settings. More generally, disparities in trait–environment relationships among males and females also suggest that ignoring sex differences in studies of trait dispersion and clustering may produce misleading inferences.  相似文献   

17.
Genetic variation in male traits and the female preferences for those traits allows for the evolution of sexual behavior. Trait–preference combinations are thought to improve the effectiveness of runaway sexual selection within a species, and are considered necessary for the induction of divergence between species. Novel traits, or variants of existing traits, and their associated preferences in the opposite sex are more likely to be maintained if they are genetically linked in proximity on a chromosome (the genetic coupling hypothesis), yet there is little empirical evidence that this genetic linkage occurs. Here we show for the first time that natural genetic variation at a single‐linked region can induce both species‐specific female choosiness and the male trait they are discriminating against. We found this effect in two separate regions of the genome, demonstrating that this linkage may be common. In contrast, female choosiness and male unattractiveness could not be alleviated by a single region. The close linkage of these loci and the strength of their effect provide an evolutionary means by which this preference–trait combination could arise and be maintained, thus enabling a more rapid route for runaway sexual selection, and providing empirical evidence supporting the genetic coupling hypothesis.  相似文献   

18.
The relative roles of natural and sexual selection in promoting evolutionary lineage divergence remains controversial and difficult to assess in natural systems. Local adaptation through natural selection is known to play a central role in promoting evolutionary divergence, yet secondary sexual traits can vary widely among species in recent radiations, suggesting that sexual selection may also be important in the early stages of speciation. Here, we compare rates of divergence in ecologically relevant traits (morphology) and sexually selected signalling traits (coloration) relative to neutral structure in genome‐wide molecular markers and examine patterns of variation in sexual dichromatism to explore the roles of natural and sexual selection in the diversification of the songbird genus Junco (Aves: Passerellidae). Juncos include divergent lineages in Central America and several dark‐eyed junco (J. hyemalis) lineages that diversified recently as the group recolonized North America following the last glacial maximum (ca. 18,000 years ago). We found an accelerated rate of divergence in sexually selected characters relative to ecologically relevant traits. Moreover, sexual dichromatism measurements suggested a positive relationship between the degree of colour divergence and the strength of sexual selection when controlling for neutral genetic distance. We also found a positive correlation between dichromatism and latitude, which coincides with the geographic axis of decreasing lineage age in juncos but also with a steep ecological gradient. Finally, we found significant associations between genome‐wide variants linked to functional genes and proxies of both sexual and natural selection. These results suggest that the joint effects of sexual and ecological selection have played a prominent role in the junco radiation.  相似文献   

19.
Quantifying introgression between sexual species and polyploid lineages traditionally thought to be asexual is an important step in understanding what drives the longevity of putatively asexual groups. Here, we capitalize on three recent innovations—ultraconserved element (UCE) sequencing, bioinformatic techniques for identifying genome‐specific variation in polyploids, and model‐based methods for evaluating historical gene flow—to measure the extent and tempo of introgression over the evolutionary history of an allopolyploid lineage of all‐female salamanders and two ancestral sexual species. Our analyses support a scenario in which the genomes sampled in unisexual salamanders last shared a common ancestor with genomes in their parental species ~3.4 million years ago, followed by a period of divergence between homologous genomes. Recently, secondary introgression has occurred at different times with each sexual species during the last 500,000 years. Sustained introgression of sexual genomes into the unisexual lineage is the defining characteristic of their reproductive mode, but this study provides the first evidence that unisexual genomes have undergone long periods of divergence without introgression. Unlike other sperm‐dependent taxa in which introgression is rare, the alternating periods of divergence and introgression between unisexual salamanders and their sexual relatives could explain why these salamanders are among the oldest described unisexual animals.  相似文献   

20.
Heterogeneity in rates of trait evolution is widespread, but it remains unclear which processes drive fast and slow character divergence across global radiations. Here, we test multiple hypotheses for explaining rate variation in an ecomorphological trait (beak shape) across a globally distributed group (birds). We find low support that variation in evolutionary rates of species is correlated with life history, environmental mutagenic factors, range size, number of competitors, or living on islands. Indeed, after controlling for the negative effect of species' age, 80% of variation in species‐specific evolutionary rates remains unexplained. At the clade level, high evolutionary rates are associated with unusual phenotypes or high species richness. Taken together, these results imply that macroevolutionary rates of ecomorphological traits are governed by both ecological opportunity in distinct adaptive zones and niche differentiation among closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号