首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to investigate (a) the presence of protein gene product 9.5 (PGP 9.5), ubiquitin, and neuropeptide Y (NPY) in the neuroendocrine and secretory epithelium of the human normal prostate and its secretions, and (b) the changes in immunoreactivity to these proteins in men with benign prostatic hyperplasia. Western blotting and light microscopic immunohistochemistry techniques were used and the numerical density of immunoreactive neuroendocrine cells, and the volume fractions of immunostained secretory epithelium were evaluated. Western blotting revealed the presence of the three antigens in both tissue homogenates and prostate secretion. Some neuroendocrine cells immunoreacted to PGP 9.5 and NPY in all the prostate regions of control specimens. Ubiquitin immunoreactivity was detected in the nuclei from both basal cells and secretory epithelial cells. The cytoplasm of the secretory cells and the glandular lumen also showed immunostaining for the three proteins. The numerical densities of both PGP 9.5 and NPY neuroendocrine cells were lower in hyperplasia than in controls. No differences in the volume fraction occupied by epithelial immunostaining to both proteins was found between hyperplastic and control prostates. We concluded that (a) PGP 9.5 and NPY, but not ubiquitin, are common antigens in both neuroendocrine and secretory prostate cells, (b) the three immunoreactive proteins contribute to the prostate secretions, and (c) the secretion of ubiquitin is markedly diminished in the hyperplastic epithelium.(J Histochem Cytochem 48:1121-1130, 2000)  相似文献   

2.
We showed previously that the proliferation of hamster airway secretory cells decreases during vitamin A deficiency (VAD) but later increases when submucosal inflammation develops (Virchows Arch [B] 59:231-242, 1990). This observation has important biological implications since two morphological extremes (atrophy and quiescence versus hyperplasia and hyperproliferation) are reported in the literature for VAD tracheal epithelium in vivo. In the present study, histological slides of tracheal rings from 35-day-old control and VAD hamsters (Virchows Arch [B] 45:197-219, 1984) were reviewed again. Rings from VAD hamsters were selected based on the absence or presence of a florid submucosal inflammation. Quantitative analyses were made on the cartilaginous part of rings from the anterior third of the trachea. When inflammation was absent, a mucociliary pseudostratified epithelium was, for the most part, maintained. The mitotic rate (MR, 6 h colchicine blockade) of secretory cells was markedly reduced (29-fold) but that of basal cells was not changed significantly. Moreover, cell density was not changed by VAD but ciliated cells and secretory cells were decreased and basal cells were increased, proportionally. We call this "minimal morphological change." Thinning (atrophy) of the minimally changed epithelium was associated with focal cell sloughing. Small scattered foci of epidermoid metaplasia (multiple layers of highly keratinized cells which were extremely flat, so that the epithelium was thin and attenuated) were also seen. We call this "atrophic epidermoid metaplasia." When inflammation was present, hyperplastic changes (stratification and epidermoid metaplasia) predominated and cells were in mitosis at all epithelial levels (low, middle, superficial) except in the most superficial (terminally differentiated) squames. The tracheal epithelium was thickened and hypercellular. The cells were piled up at the stratified lesions, and epithelial height, cell density and epithelial MR were significantly increased compared with the non-inflamed VAD epithelium. The effects of VAD and inflammation on cell proliferation were analyzed further by studying 7 h bromodeoxyuridine (BrdU) labelling patterns of cells in VAD tracheal epithelium, with and without submucosal inflammation. In addition, inflammation was induced in "minimally changed epithelium" by mild mechanical injury. The BrdU labelling patterns confirmed that DNA synthesis by secretory cells is reduced markedly by VAD. However, this suppression is overidden by the influx of inflammatory cells (the nature of the stimulus is unknown). The results indicate that the morphological contrasts (atrophy and hyperplasia) seen in the trachea during VAD in vivo are related to extremes in proliferation rates of tracheal secretory cells, regulated by VAD alone (minimal replication) and by inflammation (maximal replication).  相似文献   

3.
4.
OBJECTIVE: To determine the morphologic characteristics of the nonciliated epithelium found in chondroid hamartoma of the lung. STUDY DESIGN: The morphologic characteristics and immunohistochemical reaction for surfactant protein A of the nonciliated epithelium in chondroid hamartoma of the lung was studied by immunohistochemistry. Alveolar epithelium in normal lung tissue and lung tissue surrounding primary lung cancer or metastatic lung lesions was used as a control. RESULTS: In all cases, the nonciliated epithelium in chondroid hamartoma showed the morphologic criteria of hyperplastic alveolar type II cells and a very strong positive surfactant protein A reaction in the cytoplasm when compared with alveolar epithelium of the normal lung. Similar hyperplastic type II cells were also found in the alveolar lung around metastatic or primary lung tumors. CONCLUSION: These findings may indicate that the nonciliated cells found in chondroid hamartoma of the lung are hyperplastic type II cells. This suggests that the alveolar epithelium found in chondroid hamartoma of the lung is a secondary reaction around the hamartoma and not a primary component of the lesion.  相似文献   

5.
Fine structure of the midgut and degeneration of the midgut epithelium of the scorpionfly Sinopanorpa tincta (Navás) adults were investigated using light microscopy and scanning and transmission electron microscopy. The results show that the tubular midgut lacks gastric caeca and is composed of an outer longitudinal and an inner circular muscle layer, a basal lamina, an epithelium and a lumen from the outside to inside. A peritrophic membrane was not found in the lumen. A mass of nodules was observed on the surface of the basal lamina. Three types of cells were recognized in the epithelium: digestive, secretory, and regenerative cells. The digestive cells contain irregular-shaped infoldings in the basal membrane and two types of microvilli in the apical membrane. The secretory cells are characterized by irregular shape and large quantities of secretory granules in the basal cytoplasm. The regenerative cells are triangular in shape and distributed only in the nodules. The epithelial cells are degenerated through programmed cell-death mechanisms (apoptosis and necrosis). The type, function, and degeneration of the epithelial cells of the midgut are briefly discussed.  相似文献   

6.
Teleost enameloid matrix has been proposed to be an ectodermal, mesodermal, or joint ectodermal-mesodermal product. To determine its origin we examined the ultrastructure of the inner dental epithelium (IDE), odontoblasts, enameloid, and dentin matrices of cichlid tooth buds at the stage of enameloid formation. © Alan R. Liss, Inc. Columnar IDE cells had apical and basal terminal webs and contained organelles associated with protein synthesis, including elongated secretory granules containing fibrillar material having cross-striations with 60-nm periodicity. The morphology of IDE secretory granules was typical of procollagen granules observed in a large variety of ectodermal and mesodermal cells synthesizing collagen. In contrast, the paucity of secretory granules within three odontoblast types indicates that these cells probably do not synthesize enameloid matrix. These observations are consistent with the idea that the bulk of the enameloid matrix is itself an ectodermal collagen synthesized and secreted by IDE cells.  相似文献   

7.
Notch-dependent differentiation of adult airway basal stem cells   总被引:1,自引:0,他引:1  
The epithelium lining the airways of the adult human lung is composed of ciliated and secretory cells together with undifferentiated basal cells (BCs). The composition and organization of this epithelium is severely disrupted in many respiratory diseases. However, little is known about the mechanisms controlling airway homeostasis and repair after epithelial damage. Here, we exploit the mouse tracheobronchial epithelium, in which BCs function as resident stem cells, as a genetically tractable model of human small airways. Using a reporter allele we show that the low level of Notch signaling at steady state is greatly enhanced during repair and the generation of luminal progenitors. Loss-of-function experiments show that Notch signaling is required for the differentiation, but not self-renewal, of BCs. Moreover, sustained Notch activation in BCs promotes their luminal differentiation, primarily toward secretory lineages. We also provide evidence that this function of Notch signaling is conserved in BCs from human airways.  相似文献   

8.
The formation of epidermoid metaplasia was studied in hamster tracheal epithelium in long-term serum-free organ explant culture. Explants were cultured up to 5 weeks in CMRL 1066 with antibiotics and amphotericin B. At 3 weeks there were rare small foci of epidermoid metaplasia and they became larger and more numerous at 4 and 5 weeks. Three dimensional reconstructions from serial sections demonstrated that the small deep-seated foci were discrete and did not reach the epithelial surface, whereas the larger foci were expansive and involved the full thickness of the explant epithelium. Each small focus consisted of a few swollen electron-lucent basal cells attached to the basal lamina, covered by a layer of flattened electron-dense secretory cells which formed a tight-fitting cap over the basal cells. The altered secretory cells displayed moderately well-developed rough endoplasmic reticulum and tonofilament bundles. During the early stages of formation the deep-seated metaplastic foci were completely covered by a layer of normal appearing cuboidal to low-columnar secretory and ciliated cells. Expansion of the metaplastic foci occurred by addition of flattened, electron-dense secretory cells to the cap so that multiple layers of altered secretory cells covered a core of basal cells, analogous to the structure of an onion. The secretory cells became cornified and with time the foci broke through the columnar mucociliary surface layer. In well-advanced foci, the uppermost cornified squames (metaplastic secretory cells) exfoliated into the tracheal lumen. The study emphasizes similarities and differences between the morphogenesis and histogenesis of epidermoid metaplasia in vivo and in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
All stages of regeneration in hamster tracheal epithelium were studied following a denuding mechanical injury. At 1 h all the cells had sloughed from the wound site leaving a bare and sometimes disrupted basal lamina. Viable cells at the wound margins rapidly changed shape, flattened and migrated to cover the denuded lesion by 12 h. In addition, epithelial cells that remained viable demonstrated sublethal changes that included the rapid discharge of mucous granules from secretory cells, internalization of cilia by ciliated cells and evidence of heterophagy in both cell types. By 24 h a wave of epithelial cell divisions occurred, primarily by secretory cells. This produced a multilayered epidermoid metaplasia that was best developed at 48 h. The metaplastic epithelium was largely composed of cells with both secretory (mucous granules) and epidermoid (tonofilament bundles and numerous desmosomes) characteristics. The peroxidase-antiperoxidase (PAP) method demonstrated a few keratin-positive cells in the wound as early as 12 h post-wounding and keratin was demonstrated in more cells by 24 h. All cells in the metaplastic wound epithelium were keratin-positive by 48 h. Following 48 h some of the most superficial keratinized cells sloughed from the epithelium and the keratin content of the remaining cells began to decline. At 72 h pre-ciliated and pre-secretory cells were seen in the wound. Pre-ciliated cells were characterized by an abundant electron-lucent cytoplasm, large pale nucleus, filiform apical microvilli and evidence of ciliogenesis, similar to that seen during fetal development. Pre-ciliated cells often contained apical mucous granules, apparently carried over from the parent secretory cells. With the appearance of these columnar cells the normal mucociliary morphology was restored in small wounds by 120 h, but some persistent epidermoid metaplasia remained in the large wounds through 168 h post-wounding. These data provide further evidence for the important role of secretory cells in the histogenesis of epidermoid metaplasia and the regeneration of normal morphology following injury. The implications of these findings in understanding the histogenesis of other lesions in the tracheo-bronchial epithelium are discussed.  相似文献   

10.
Isthmic and ampullary oviductal epithelia sampled from Merino ewes at days -1, 1, 3, and 10 of the estrous cycle (estrus = day 0) were studied by scanning and transmission electron microscopy after fixation by vascular perfusion. Secretory cells, ciliated cells, and lymphocytelike basal cells were observed in both isthmic and ampullary epithelium at all stages of the estrous cycle studied and their ultrastructural features were analyzed. Synthesis of lamellated secretory granules occurred in the ampullary secretory cells during the follicular and early luteal phases, and their contents were released by exocytosis into the oviductal lumen during the luteal phase. Granule release was associated with nucleated apical protrusion of these cells into the oviductal lumen. No such secretory activity was displayed by isthmic secretory cells even though a few cells contained nonlamellated granules. Apocrine release of apical vesicles and accompanying cytoplasmic material from apical protrusions of ciliated cells occurred in the isthmus around estrus but not in the ampulla. This unexpected feature has not previously been reported in any other mammal. Dendritic basal cells were distinguished in the lower part of the epithelium by their heterochromatic nuclei, electron-lucent cytoplasm, and lack of attachment zones. No migration of basal cells was observed, and their ultrastructural features were similar in the ampulla and isthmus and at all stages of the estrous cycle examined. The function of these lymphocytelike cells in the epithelium is uncertain, but the presence of phagocytic bodies and lysosomes in 20% of them may indicate a phagocytic role.  相似文献   

11.
Weber P. 1987. The fine structure of the female reproductive tract of adult Loa loa. International Journal for Parasitology17: 927–934. The wall of the female reproductive tract of Loa loa was studied by electron microscopy. The wall is composed of a monolayered epithelium covered by a basal lamina. The epithelium of the ovary has a moderately developed basal labyrinth, abundant organelles, and a few secretory granules. In the oviduct, the basal lamina intrudes septa-like into the epithelium. Abundant myofilaments are attached to it. Microvilli cover the luminal cell border. The seminal receptacle contains few muscle cells in its basal lamina. It shows a highly developed spongy zone at its luminal surface. The uterine epithelium contains glycogen deposits and lipid droplets. In its anterior parts it shows a highly developed basal labyrinth and an abundance of secretory granules. The vagina has several layers of muscle cells in the basal lamina. Its epithelium contains few organelles, a small number of secretory granules, and is devoid of storage deposits.  相似文献   

12.
Cell surface specialization, a characteristic common to most ion-transporting epithelia, was studied in the salt (nasal) gland of the domestic duck in relation to osmotic stress. Three days after hatching, experimental ducklings were given 1% NaCl to drink for 12 hr and freshwater for the remainder of each day. Control ducklings were maintained exclusively on freshwater. The fine structure of the secretory epithelium was examined on various days of the regimen. The nasal gland epithelium of the secretory lobule is composed of several types of cells. Peripheral cells, lying at the blind ends of the branched secretory tubules, are similar in both control and experimental animals at all stages of glandular development. These generative cells contain few mitochondria and have nearly smooth cell surfaces. Partially specialized secretory cells predominate in the secretory tubules of control animals and appear as transitional cells in the tubular epithelium of salt-stressed animals. These cells contain few mitochondria and bear short folds along their lateral cell surfaces. Fully specialized cells dominate the secretory epithelium of osmotically stressed ducklings. The lateral and basal surfaces of these cells are deeply folded, forming complex intra- and extracellular compartments. This vast increase in absorptive surface area is paralleled by an increase in the number of mitochondria that pack the basal compartments. The development of this fully specialized cell is correlated with the marked increase in (Na+-K+)-ATPase activity in the glands of osmotically stressed birds.  相似文献   

13.
Human deep posterior lingual glands (von Ebner's glands) are located beneath the circumvallate papillae. They are formed by tubuloalveolar adenomeres, intercalated ducts and excretory ducts coming together in the main excretory duct. The tubuloalveolar cells, pyramid-shaped, show large and dense secretory granules (clear cored) throughout the cytoplasm, rare basal folds and packed cisternae of rough endoplasmic reticulum (RER) at the basal pole. The columnar cells of the intercalated ducts are arranged in a monolayer. They are characterized by dense, clear-core secretory granules (mostly in the apical cytoplasm), a basal nucleus, well-developed RER and Golgi apparatus, and thin filaments distributed in supra- and perinuclear cytoplasm. Striated ducts are absent. Excretory ducts, coming together in the main duct, are lined by a bistratified epithelium. The inner layer consists of columnar cells showing bundles of tonofilaments with scarce secretory activity. The outer layer is composed of basal cells lying on the basal lamina. The main excretory duct, which opens at the bottom of the vallum, shows a stratified epithelium. The outer side is composed of 2-3 layers of malpighian cells lying on the basal lamina. The inner side consists of a single layer of cuboidal-columnar cells with dense apical granules and well-developed organelles synthesizing and condensing secretions. These cells interpolate with goblet cells, rare mitochondria-rich cells, ciliated cells and numerous small globous cells showing a clear matrix and lacking secretory granules. The cilia show a 9 + 2 microtubular structure with basal bodies provided with striated rootlets. Myoepithelial cells surround with their processes the basal portions of the secretory cells and the intercalated ducts. The conclusions concern some comparative aspects and some hypothesis on the functional role of goblet cells, ciliated cells and epithelial cells lining the different ducts, also in relation to the final secretory product.  相似文献   

14.
Mammary epithelium is organized as a bilayer with a layer of luminal secretory cells and a layer of basal myoepithelial cells. To dissect the specific functions of these two major compartments of the mammary epithelium in mammary morphogenesis we have used genetically modified mice carrying transgenes or conditional alleles whose expression or ablation were cell-type specific. Basal cells are located in close proximity to mammary stroma and directly interact with the extracellular matrix (basement membrane) during all their lifespan. On the contrary, luminal secretory cells during early stages of the postnatal mammary development have only limited contacts with basement membrane and become exposed to the extracellular matrix only during late developmental stages at the end of pregnancy and in lactation. Consistently perturbation of beta1-integrin function specifically in the luminal layer of the mammary epithelium, did not interfere with mammary morphogenesis until the second part of pregnancy but led to impaired secretory differentiation and lactation. On the contrary, ablation of beta1-integrin gene in the basal mammary epithelial cells resulted in a more precocious phenotype: disorganized branching in young virgin animals and a complete arrest of lobuloalveolar development. Further, a constitutive activation of beta-catenin signaling due to expression of N-terminally truncated (stabilized) beta-catenin specifically in basal myoepithelial cells resulted in accelerated differentiation of luminal secretory cells in pregnancy, precocious postlactational involution, increased angiogenesis and development of mammary tumors. Altogether these data suggest that basal mammary epithelial cells can affect growth and differentiation of luminal secretory cells, have an impact on the epithelium-stroma relationships and, thereby, play an important role in the process of mammary morphogenesis and differentiation.  相似文献   

15.
Summary The metaplastic polyp is a non-neoplastic epithelial lesion found within the human colorectum. Although not regarded as precancerous, recent studies have demonstrated the expression of multiple cancerassociated phenotypes. This might indicate a possible indirect relationship between metaplastic polyps and colorectal cancer. Epithelial secretory component and IgA were demonstrated by the immunoperoxidase technique and staining intensities were assessed semiquantitatively. The findings were related to cellular differentiation in normal colorectal epithelium as compared to the metaplastic polyp. The crypt base cells and also the surface epithelial cells stained with similar intensity in both types of epithelium. However, the expected increase in staining characterizing normal lower and upper crypt columnar cells and reduction in staining associated with the switch from crypt to surface columnar cell was not observed in the metaplastic polyp. Metaplastic crypt columnar cells showed significantly reduced staining for both IgA and secretory component as compared to their normal counterparts. There was also a significant reduction in the number of IgA-secreting plasma cells in the lamina propria of the metaplastic polyp. These findings are consistent with the concept of a premature switch to mature surface cell characteristics within the metaplastic polyp. They are discussed in the light of other changes in phenotype associated with this lesion.  相似文献   

16.
Myoepithelial cells were present between the basal lamina and the acinar secretory cells of human labial salivary glands. In form and disposition, they resembled myoepithelial cells in the major salivary glands. Many of these cells possessed single cilia on their upper surfaces. Such cilia occasionally extended into invaginations of the overlying secretory cell. The intercalated ducts were variable in occurrence. Their epithelium ranged from columnar to squamous, and showed few signs of secretory activity. Few intralobular ducts possessed basal striations. While mitochondria were abundant in non-striated cells, they were randomly disposed in both basal and apical cytoplasm, and the basal plasmalemma showed only occasional infoldings. The paucity of true striated ducts in labial salivary glands may be responsible for the high concentration of sodium and chloride in unstimulated labial gland salivary secretions.  相似文献   

17.
Summary Glucose-6-phosphatase is an endoplasmic reticulum system which is found primarily in liver and kidney. Recently, it has become clear that it is also present in lower amounts in a variety of other tissues. Previous histochemical studies of glucose-6-phosphate hydrolysis in trachea have given equivocal results and only one study on adult oesophagus has shown glucose-6-phosphatase, enzymatic activity but without cellular localization. We have now shown, using microassay techniques, that microsomes isolated from human foetal trachea and oesophagus both contain low levels of specific glucose-6-phosphatase activity (mean= 0.9 and 1.5 nmol min−1 mg−1 microsomal protein, respectively) which are less than 10% of the levels in microsomes of human foetal liver of similar age. In the developing trachea, glucose-6-phosphatase immunoreactivity has been found, using a monospecific antibody to the catalytic subunit of the glucose-6-phosphatase enzyme, to be first present at 10–11 weeks' gestation, and thereafter in foetal life, predominantly present in ciliated cells, with smaller amounts in non-ciliated secretory cells, duct lining cells, and occasional basal cells. The foetal oesophageal epithelium is transiently ciliated from 10 to 11 weeks' gestation, but ciliated cells are gradually replaced by squamous cells from 14 to 16 weeks onwards. Glucose-6-phosphatase immunoreactivity in human foetal oesophagus is predominantly confined to ciliated cells, but non-ciliated luminal cells are also reactive, as are occasional basal cells. Mucus secretory cells in foetal trachea and oesophagus are immunonegative, as is the entire epithelium of both organs in the embryo (up to 56 postovulatory days).  相似文献   

18.
Airway basal cells (BC) function as stem/progenitor cells capable of differentiating into the luminal ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. The objective of this study was to define the role of Notch signaling in regulating human airway BC differentiation into a pseudostratified mucociliated epithelium. Notch inhibition with γ-secretase inhibitors demonstrated Notch activation is essential for BC differentiation into secretory and ciliated cells, but more so for the secretory lineage. Sustained cell autonomous ligand independent Notch activation via lentivirus expression of the intracellular domain of each Notch receptor (NICD1-4) demonstrated that the NOTCH2 and 4 pathways have little effect on BC differentiation into secretory and ciliated cells, while activation of the NOTCH1 or 3 pathways has a major influence, with persistent expression of NICD1 or 3 resulting in a skewing toward secretory cell differentiation with a parallel decrease in ciliated cell differentiation. These observations provide insights into the control of the balance of BC differentiation into the secretory vs ciliated cell lineage, a balance that is critical for maintaining the normal function of the airway epithelium in barrier defense against the inhaled environment.  相似文献   

19.
Basal and secretory cells have been separated as highly enriched viable populations from single-cell suspensions of rat tracheal epithelial cells. Isolation of the populations was achieved by preparation of a cell suspension and separation by flow cytometry using contour maps generated from 2 degrees and 90 degrees light scatter signals. Flow cytometric analysis of cells showed 10% of the whole preparation were cells in SG2M phase of the cell cycle. The secretory cells accounted for 86% of these cycling cells; the remainder were accounted for by the basal cells. Culture of sorted populations of basal and secretory cells in serum free defined medium showed that basal cells had a lower (0.6%) colony-forming efficiency than secretory cells (3.4%). Significant differences in blue auto-fluorescence, Hoechst 33342 uptake, and lectin staining were apparent between basal and secretory cells. These results suggest that the secretory cell rather than the basal cell is primarily the cell type involved in maintenance of the normal tracheal epithelium. Secretory cells are greater in number, have a higher proliferative potential, and greater metabolic capability. Because of these traits they may be a critical cell at risk from damage by environmental agents.  相似文献   

20.
The human oviduct epithelium primarily consists of ciliated cells and secretory cells. Solitary cilia usually extend from the apical surface of the secretory cells. We investigated the localization of -tubulin in the ciliary basal apparatus of both cell types by fluorescence immunohistochemistry and immunoelectron microscopy. In addition to basal bodies, -tubulin was identified in the lateral basal foot, especially the basal foot cap. This observation is consistent with previous observations that microtubules radiate from the basal foot and the basal foot serves as the microtubule organizing centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号