首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.  相似文献   

2.
血管内皮细胞生长因子 (VEGF)通过结合其酪氨酸激酶受体KDR、fms样酪氨酸激酶 1(Flt 1)调节新生血管形成 ;筛选能封闭VEGF结合Flt 1的小肽 ,可以通过阻断肿瘤血管形成 ,抑制实体瘤生长 .将从噬菌体 12肽库中筛选获得的 2个能与Flt 1结合的阳性噬菌体克隆 (F5 6和F90 )十二肽DNA(36bp)克隆到表达载体pQE4 2中 ,在大肠杆菌M15中稳定表达二氢叶酸还原酶融合蛋白(DHFR F5 6 F90 ) ,经变性、复性后得到纯度达 90 %的可溶性蛋白 .ELISA检测表明 ,DHFR F5 6 F90能结合可溶性受体sFlt 1和血管内皮细胞 ;12 5I VEGF竞争抑制实验显示 ,DHFR F5 6能竞争抑制VEGF同可溶性受体sFlt 1结合 .结果提示 ,F5 6可能是VEGF受体Flt 1的有效拮抗剂 ,具有抗肿瘤新生血管形成的潜在应用前景  相似文献   

3.
Fibroblastic proliferation accompanies many angiogenesis-related retinal and systemic diseases. Since connective tissue growth factor (CTGF) is a potent mitogen for fibrosis, extracellular matrix production, and angiogenesis, we have studied the effects and mechanism by which vascular endothelial growth factor (VEGF) regulates CTGF gene expression in retinal capillary cells. In our study, VEGF increased CTGF mRNA levels in a time- and concentration-dependent manner in bovine retinal endothelial cells and pericytes, without the need of new protein synthesis and without altering mRNA stability. VEGF activated the tyrosine receptor phosphorylation of KDR and Flt1 and increased the binding of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit to KDR and Flt1, both of which could mediate CTGF gene induction. VEGF-induced CTGF expression was mediated primarily by PI3-kinase activation, whereas PKC and ERK pathways made only minimal contributions. Furthermore, overexpression of constitutive active Akt was sufficient to induce CTGF gene expression, and inhibition of Akt activation by overexpressing dominant negative mutant of Akt abolished the VEGF-induced CTGF expression. These data suggest that VEGF can increase CTGF gene expression in bovine retinal capillary cells via KDR or Flt receptors and the activation of PI3-kinase-Akt pathway independently of PKC or Ras-ERK pathway, possibly inducing the fibrosis observed in retinal neovascular diseases.  相似文献   

4.
Kim CW  Son KN  Choi SY  Kim J 《FEBS letters》2006,580(18):4332-4336
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein, which plays a variety of biological processes including immunity. In this study, we demonstrate that human LF upregulates KDR/Flk-1 mRNA and protein levels in HUVECs at an optimal concentration of 5 microg/ml, which subsequently promotes the VEGF-induced proliferation and migration of the endothelial cells. Exposure of HUVECs to LF significantly increased VEGF-induced ERK MAP kinase phosphorylation. The maximal stimulation of KDR/Flk-1 expression by LF was correlated with LF-induced increase in cell proliferation and migration. These findings suggest that LF may stimulate in vivo angiogenesis via upregulation of KDR/Flk-1 expression in endothelial cells.  相似文献   

5.
Vascular endothelial cell growth factor (VEGF) is a potent angiogenic factor expressed during embryonic development, during wound healing, and in pathologies dependent on neovascularization, including cancer. Regulation of the receptor tyrosine kinases, KDR and Flt-1, to which VEGF binds on endothelial cells is incompletely understood. Chronic incubation with tumor-conditioned medium or VEGF diminished (125)I-VEGF binding to human umbilical vein endothelial cells, incorporation of (125)I-VEGF into covalent complexes with KDR and Flt1, and immunoreactive KDR in cell lysates. Receptor down-regulation desensitized VEGF activation of mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2) and p38 mitogen-activated protein kinase. Preincubation with VEGF or tumor-conditioned medium down-regulated cell surface receptor expression but up-regulated KDR and Flt-1 mRNAs, an effect abrogated by a neutralizing VEGF antibody. Removal of VEGF from the medium led to recovery of (125)I-VEGF binding and resensitization of human umbilical vein endothelial cells. Recovery of receptor expression was inhibited by cycloheximide, indicating that augmented VEGF receptor mRNAs, and not receptor recycling from a cytoplasmic pool, restored responsiveness. As the VEGF receptors promote endothelial cell survival, proliferation, and other events necessary for angiogenesis, the noncoordinate regulation of VEGF receptor proteins and mRNAs suggests that human umbilical vein endothelial cells are protected against inappropriate or prolonged loss of VEGF receptors by a homeostatic mechanism important to endothelial cell function.  相似文献   

6.
Vascular endothelial growth factor (VEGF), one of the most important angiogenic factors, plays an essential role in both physiological and pathological angiogenesis. The VEGF receptor KDR/Flk-1 (a kinase domain receptor) mediates various biological activities of VEGF related to proliferation, differentiation, and migration of endothelial cells. Here we present a novel peptide designated K237-(HTMYYHHYQHHL), which was isolated from a phage-displayed peptide library, binding to KDR with high affinity and specificity. By interfering with the VEGF-KDR interaction, the peptide K237 inhibited proliferation of cultured primary human umbilical vein endothelial cells induced by recombinant human VEGF(165) in a dose-dependent and cell type-specific manner. The peptide also exerted an anti-angiogenesis activity in vivo as revealed using the chick embryo chorioallantoic membrane angiogenesis assay. Moreover, the peptide K237 significantly inhibited the growth of solid tumors implanted beneath the breasts and their metastases to lungs in severe combined immunodeficient mice. Taken together, these findings suggest that the peptide K237 can functionally disrupt the interaction between VEGF and the KDR receptor and cause potent biological effects that include the inhibition of angiogenesis and tumor growth. As a consequence, this peptide (and its future derivatives) may have use as a potential cancer therapy.  相似文献   

7.
This study was initiated to identify signaling proteins used by the receptors for vascular endothelial cell growth factor KDR/Flk1, and Flt1. Two-hybrid cloning and immunoprecipitation from human umbilical vein endothelial cells (HUVEC) showed that KDR binds to and promotes the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Neither placental growth factor, which activates Flt1, epidermal growth factor (EGF), or fibroblast growth factor (FGF) induced tyrosine phosphorylation of PLCgamma, indicating that KDR is uniquely important to PLCgamma activation in HUVEC. By signaling through KDR, VEGF promoted the tyrosine phosphorylation of focal adhesion kinase, induced activation of Akt, protein kinase Cepsilon (PKCepsilon), mitogen-activated protein kinase (MAPK), and promoted thymidine incorporation into DNA. VEGF activates PLCgamma, PKCepsilon, and phosphatidylinositol 3-kinase independently of one another. MEK, PLCgamma, and to a lesser extent PKC, are in the pathway through which KDR activates MAPK. PLCgamma or PKC inhibitors did not affect FGF- or EGF-mediated MAPK activation. MAPK/ERK kinase inhibition diminished VEGF-, FGF-, and EGF-promoted thymidine incorporation into DNA. However, blockade of PKC diminished thymidine incorporation into DNA induced by VEGF but not FGF or EGF. Signaling through KDR/Flk1 activates signaling pathways not utilized by other mitogens to induce proliferation of HUVEC.  相似文献   

8.
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.  相似文献   

9.
There is increasing evidence that the core clock gene Period 1 (PER1) plays important roles in the formation of various tumors. However, the biological functions and mechanism of PER1 in promoting tumor progression remain largely unknown. Here, we discovered that PER1 was markedly downregulated in oral squamous cell carcinoma (OSCC). Then, OSCC cell lines with stable overexpression, knockdown, and mutation of PER1 were established. We found that PER1 overexpression significantly inhibited glycolysis, glucose uptake, proliferation, and the PI3K/AKT pathway in OSCC cells. The opposite effects were observed in PER1-knockdown OSCC cells. After treatment of PER1-overexpressing OSCC cells with an AKT activator or treatment of PER1-knockdown OSCC cells with an AKT inhibitor, glycolysis, glucose uptake, and proliferation were markedly rescued. In addition, after treatment of PER1-knockdown OSCC cells with a glycolysis inhibitor, the increase in cell proliferation was significantly reversed. Further, coimmunoprecipitation (Co-IP) and cycloheximide (CHX) chase experiment demonstrated that PER1 can bind with RACK1 and PI3K to form the PER1/RACK1/PI3K complex in OSCC cells. In PER1-overexpressing OSCC cells, the abundance of the PER1/RACK1/PI3K complex was significantly increased, the half-life of PI3K was markedly decreased, and glycolysis, proliferation, and the PI3K/AKT pathway were significantly inhibited. However, these effects were markedly reversed in PER1-mutant OSCC cells. In vivo tumorigenicity assays confirmed that PER1 overexpression inhibited tumor growth while suppressing glycolysis, proliferation, and the PI3K/AKT pathway. Collectively, this study generated the novel findings that PER1 suppresses OSCC progression by inhibiting glycolysis-mediated cell proliferation via the formation of the PER1/RACK1/PI3K complex to regulate the stability of PI3K and the PI3K/AKT pathway-dependent manner and that PER1 could potentially be a valuable therapeutic target in OSCC.Subject terms: Oral cancer, Cell growth, RNAi  相似文献   

10.
Human brain vascular smooth muscle cell (HBVSMC) migration contributes to angiogenesis and several pathological processes in the brain. However, the molecular mechanism of angiogenesis, in which smooth muscle cell contributes, remains unclear. Our study investigates the role of vascular endothelial growth factor (VEGF) in the HBVSMC migration and elucidates the chemotactic signaling pathway mediating this action. We used the in vitro 'scratch' wound method to detect the HBVSMC migration. VEGF(165) (1-40ng/ml) induced the HBVSMC migration in a dose-dependent manner (P<0.05). VEGF(165) does not induce HBVSMC proliferation. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, significantly inhibited serine/threonine kinase Akt/protein kinase B (PKB) phosphorylation and reduced HBVSMC migration into the wound edge following VEGF(165) stimulation (P<0.05). PD98059, an extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor, also significantly inhibited ERK1/2 phosphorylation and reduced the numbers of SMC migration. Parallel distance measurement showed that VEGF(165) induced HBVSMC migration significantly reduced due to inhibition of PI3K or ERK1/2 phosphorylation (P<0.05). Our results demonstrate that VEGF(165) could induce HBVSMC migration but not proliferation in vitro. Inhibiting Akt/PKB or ERK1/2 phosphorylation could reduce VEGF(165) induced HBVSMC migration. We provide the first evidence that activation of PI3K or ERK1/2 pathways are a crucial event in VEGF(165) mediated signal transduction leading to HBVSMC migration.  相似文献   

11.
12.
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) elicit numerous biological responses including cell survival, growth, migration, and differentiation in endothelial cells mediated by the endothelial differentiation gene, a family of G-protein-coupled receptors, and fetal liver kinase-1/kinase-insert domain-containing receptor (Flk-1/KDR), one of VEGF receptors, respectively. Recently, it was reported that S1P or VEGF treatment of endothelial cells leads to phosphorylation at Ser-1179 in bovine endothelial nitric oxide synthase (eNOS), and this phosphorylation is critical for eNOS activation. S1P stimulation of eNOS phosphorylation was shown to involve G(i) protein, phosphoinositide 3-kinase, and Akt. VEGF also activates eNOS through Flk-1/KDR, phosphoinositide 3-kinase, and Akt, which suggested that S1P and VEGF may share upstream signaling mediators. We now report that S1P treatment of bovine aortic endothelial cells acutely increases the tyrosine phosphorylation of Flk-1/KDR, similar to VEGF treatment. S1P-mediated phosphorylation of Flk-1/KDR, Akt, and eNOS were all inhibited by VEGF receptor tyrosine kinase inhibitors and by antisense Flk-1/KDR oligonucleotides. Our study suggests that S1P activation of eNOS involves G(i), calcium, and Src family kinase-dependent transactivation of Flk-1/KDR. These data are the first to establish a critical role of Flk-1/KDR in S1P-stimulated eNOS phosphorylation and activation.  相似文献   

13.
Thrombin, a multifunctional serine protease, is generated at the site with vascular injuries. It not only participates in the coagulation cascade, but also can induce a lot of events related to cell mitogenesis and migration. In this study, we investigated the effect of thrombin on endothelial cell proliferation induced by vascular endothelial growth factor (VEGF). Thrombin promoted proliferation of cultured bovine carotid endothelial cells in a time- and dose-dependent manner. Moreover, it drastically enhanced the cell growth stimulated by VEGF. This stimulatory effect was reduced by inhibitors of either protein kinase C (PKC) or mitogen-activated protein kinase kinase (MAPKK). Thrombin induced a significant increase in the level of mRNA of the kinase domain-containing receptor (KDR), but not tms-like tyrosine kinase (Flt-1), in a time-dependent manner, which reached the maximum after 24 h of stimulation. This increase coincides well with the KDR protein expression. The luciferase assay showed that thrombin induced an about 7.5-fold increase in the KDR promoter activity compared with the control. This enhanced KDR promoter activity was also abolished by inhibitors of either PKC or MAPKK. The deletion analyses indicated that the region between -115 and -97 (containing Sp1 binding region) within the KDR promoter gene was required for the enhanced KDR expression induced by thrombin and VEGF. Moreover, the nitric oxide synthase (NOS) inhibitor abolished both the accelerated cell proliferation and the increased KDR expression induced by thrombin and VEGF. This inhibition was abrogated by DETA NONOate, a NO donor with long half-life. These findings suggest that thrombin might potentiate the VEGF-induced angiogenic activity through increasing the level of the VEGF receptor KDR, in which production of NO is involved.  相似文献   

14.
Endothelial cells express two related vascular endothelial growth factor (VEGF) receptor tyrosine kinases, KDR (kinase-insert domain containing receptor, or VEGFR-2) and Flt-1 (fms-like tyrosine kinase, or VEGFR-1). Although considerable experimental evidence links KDR activation to endothelial cell mitogenesis, there is still significant uncertainty concerning the role of individual VEGF receptors for other biological effects such as vascular permeability. VEGF mutants that bind to either KDR or Flt-1 with high selectivity were used to determine which of the two receptors serves to mediate different VEGF functions. In addition to mediating mitogenic signaling, selective KDR activation was sufficient for the activation of intracellular signaling pathways implicated in cell migration. KDR stimulation caused tyrosine phosphorylation of both phosphatidylinositol 3-kinase and phospholipase Cgamma in primary endothelial cells and stimulated cell migration. KDR-selective VEGF was also able to induce angiogenesis in the rat cornea to an extent indistinguishable from wild type VEGF. We also demonstrate that KDR, but not Flt-1, stimulation is responsible for the induction of vascular permeability by VEGF.  相似文献   

15.
Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) achieves its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGF receptor-1) and KDR (VEGF receptor-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with these two receptors intact, we developed a chimeric receptor system in which the N terminus of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR (EGDR) and Flt-1 (EGLT). We observed that KDR, but not Flt-1, was responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration. Moreover, Flt-1 showed an inhibitory effect on KDR-mediated proliferation, but not migration. We also demonstrated that the inhibitory function of Flt-1 was mediated through the phosphatidylinositol 3-kinase (PI-3K)-dependent pathway because inhibitors of PI-3K as well as a dominant negative mutant of p85 (PI-3K subunit) reversed the inhibition, whereas a constitutively activated mutant of p110 introduced the inhibition to HUVEC-EGDR. We also observed that, in VPF/VEGF-stimulated HUVECs, the Flt-1/EGLT-mediated down-modulation of KDR/EGDR signaling was at or before intracellular Ca(2+) mobilization, but after KDR/EGDR phosphorylation. By mutational analysis, we further identified that the tyrosine 794 residue of Flt-1 was essential for its antiproliferative effect. Taken together, these studies contribute significantly to our understanding of the signaling pathways and biological functions triggered by KDR and Flt-1 and describe a unique mechanism in which PI-3K acts as a mediator of antiproliferation in primary vascular endothelium.  相似文献   

16.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

17.
Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for the first time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p<0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.  相似文献   

18.
19.
The mechanism by which vascular endothelial growth factor (VEGF) regulates endothelial nitric-oxide synthase (eNOS) expression is presently unclear. Here we report that VEGF treatment of bovine adrenal cortex endothelial cells resulted in a 5-fold increase in both eNOS protein and activity. Endothelial NOS expression was maximal following 2 days of constant VEGF exposure (500 pM) and declined to base-line levels by day 5. The elevated eNOS protein level was sustained over the time course if VEGF was co-incubated with L-N(G)-nitroarginine methyl ester, a competitive eNOS inhibitor. Addition of S-nitroso-N-acetylpenicillamine, a nitric oxide donor, prevented VEGF-induced eNOS up-regulation. These data suggest that nitric oxide participates in a negative feedback mechanism regulating eNOS expression. Various approaches were used to investigate the role of the two high affinity VEGF receptors in eNOS up-regulation. A KDR receptor-selective mutant increased eNOS expression, whereas an Flt-1 receptor-selective mutant did not. Furthermore, VEGF treatment increased eNOS expression in a KDR but not in an Flt-1 receptor-transfected porcine aorta endothelial cell line. SU1498, a selective inhibitor of the KDR receptor tyrosine kinase, blocked eNOS up-regulation, thus providing further evidence that the KDR receptor signals for eNOS up-regulation. Finally, treatment of adrenal cortex endothelial cells with VEGF or phorbol ester resulted in protein kinase C activation and elevated eNOS expression, whereas inhibition of protein kinase C with isoform-specific inhibitors abolished VEGF-induced eNOS up-regulation. Taken together, these data demonstrate that VEGF increases eNOS expression via activation of the KDR receptor tyrosine kinase and a downstream protein kinase C signaling pathway.  相似文献   

20.
In endothelial cells, neuropilin-1 (NRP1) binds vascular endothelial growth factor (VEGF)-A and is thought to act as a coreceptor for kinase insert domain-containing receptor (KDR) by associating with KDR and enhancing VEGF signaling. Here we report mutations in the NRP1 b1 domain (Y297A and D320A), which result in complete loss of VEGF binding. Overexpression of Y297A and D320A NRP1 in human umbilical vein endothelial cells reduced high-affinity VEGF binding and migration toward a VEGF gradient, and markedly inhibited VEGF-induced angiogenesis in a coculture cell model. The Y297A NRP1 mutant also disrupted complexation between NRP1 and KDR and decreased VEGF-dependent phosphorylation of focal adhesion kinase at Tyr407, but had little effect on other signaling pathways. Y297A NRP1, however, heterodimerized with wild-type NRP1 and NRP2 indicating that nonbinding NRP1 mutants can act in a dominant-negative manner through formation of NRP1 dimers with reduced binding affinity for VEGF. These findings indicate that VEGF binding to NRP1 has specific effects on endothelial cell signaling and is important for endothelial cell migration and angiogenesis mediated via complex formation between NRP1 and KDR and increased signaling to focal adhesions. Identification of key residues essential for VEGF binding and biological functions provides the basis for a rational design of antagonists of VEGF binding to NRP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号