首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G?/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.  相似文献   

3.
The biological outcome of nitric oxide (NO) and reactive nitrogen species (RNS) in regulating pro survival and pro death autophagic pathways still demand further investigation. In the present study, we investigated the effect of nitrosative stress in K562 cells using NO donor compound DETA-NONOate, peroxynitrite, and SIN-1. Exposure to NO, peroxynitrite, and SIN-1 caused decrease in K562 cell survival. NO induced autophagy but not apoptosis or necrosis in K562 cells. In contrast, peroxynitrite and SIN-1 treatment induced apoptosis in K562 cells. Surprisingly, inhibition of autophagic response using 3-methyladenine led to the induction of apoptosis in K562 cells. Increase in 5’adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was only observed in the presence of NO donor indicated that AMPK was crucial to induce autophagy in K562 cells. We for the first time discovered a novel role of p73 in autophagy induction under nitrosative stress in K562 cells. TAp73α was only induced upon exposure to NO but not in the presence of peroxynitrite. Reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio remained unaltered upon NO exposure. Our data suggest a complex network of interaction and cross regulations between NO and p73. These data open a new path for therapies based on the abilities of RNS to induce autophagy-mediated cell death.  相似文献   

4.
Targeting checkpoint kinases has been shown to have a potential chemosensitizing effect in cancer treatment. However, inhibitors of such kinases preferentially abrogate the DNA damage-induced G2 checkpoint in p53-/- as opposed to p53+/+ cells. The mechanisms by which p53 (TP53) can prevent abrogation of the G2 checkpoint are unclear. Using normal human diploid p53+/+ and p53-/- fibroblasts as model systems, we have compared the effects of three checkpoint inhibitors, caffeine, staurosporine and UCN-01, on gamma-radiation-induced G2 arrest. The G2 arrest in p53+/+ cells was abrogated by caffeine, but not by staurosporine and UCN-01, whereas the G2 arrest in p53-/- cells was sensitive to all three inhibitors. Chk2 (CHEK1) phosphorylation was maintained in the presence of all three inhibitors in both p53+/+ and p53-/- cells. Chk1 phosphorylation was maintained only in the presence of staurosporine and UCN-01 in p53+/+ cells. In the presence of caffeine Chk1 phosphorylation was inhibited regardless of p53 status. The pathway of Chk1 phosphorylation --> Cdc25A degradation --> inhibition of cyclin B1/Cdk1 activity --> G2 arrest is accordingly resistant to staurosporine and UCN-01 in p53+/+ cells. Moreover, sustained phosphorylation of Chk1 in the presence of staurosporine and UCN-01 is strongly related to phosphorylation of p53. The present study suggests the unique role of Chk1 in preventing abrogation of the G2 checkpoint in p53+/+ cells.  相似文献   

5.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

6.
7.
8.
Activation of Checkpoint kinase 1 (Chk1) following DNA damage mediates cell cycle arrest to prevent cells with damaged DNA from entering mitosis. Here we provide a high-resolution analysis of cells as they undergo S- and G₂-checkpoint bypass in response to Chk1 inhibition with the selective Chk1 inhibitor GNE-783. Within 4–8 h of Chk1 inhibition following gemcitabine induced DNA damage, cells with both sub-4N and 4N DNA content prematurely enter mitosis. Coincident with premature transition into mitosis, levels of DNA damage dramatically increase and chromosomes condense and attempt to align along the metaphase plate. Despite an attempt to congress at the metaphase plate, chromosomes rapidly fragment and lose connection to the spindle microtubules. Gemcitabine mediated DNA damage promotes the formation of Rad51 foci; however, while Chk1 inhibition does not disrupt Rad51 foci that are formed in response to gemcitabine, these foci are lost as cells progress into mitosis. Premature entry into mitosis requires the Aurora, Cdk1/2 and Plk1 kinases and even though caspase-2 and -3 are activated upon mitotic exit, they are not required for cell death. Interestingly, p53, but not p21, deficiency enables checkpoint bypass and chemo-potentiation. Finally, we uncover a differential role for the Wee-1 checkpoint kinase in response to DNA damage, as Wee-1, but not Chk1, plays a more prominent role in the maintenance of S- and G₂-checkpoints in p53 proficient cells.  相似文献   

9.
10.
11.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

12.
The oncogenic Wip1 phosphatase (PPM1D) is induced upon DNA damage in a p53-dependent manner and is required for inactivation or suppression of DNA damage-induced cell cycle checkpoint arrest and of apoptosis by dephosphorylating and inactivating phosphorylated Chk2, Chk1, and ATM kinases. It has been reported that arsenic trioxide (ATO), a potent cancer chemotherapeutic agent, in particular for acute promyelocytic leukemia, activates the Chk2/p53 pathway, leading to apoptosis. ATO is also known to activate the p38 MAPK/p53 pathway. Here we show that phosphatase activities of purified Wip1 toward phosphorylated Chk2 and p38 in vitro are inhibited by ATO in a dose-dependent manner. Furthermore, DNA damage-induced phosphorylation of Chk2 and p38 in cultured cells is suppressed by ectopic expression of Wip1, and this Wip1-mediated suppression can be restored by the presence of ATO. We also show that treatment of acute promyelocytic leukemia cells with ATO resulted in induction of phosphorylation and activation of Chk2 and p38 MAPK, which are required for ATO-induced apoptosis. Importantly, this ATO-induced activation of Chk2/p53 and p38 MAPK/p53 apoptotic pathways can be enhanced by siRNA-mediated suppression of Wip1 expression, further indicating that ATO inhibits Wip1 phosphatase in vivo. These results exemplify that Wip1 is a direct molecular target of ATO.  相似文献   

13.
Cells respond to DNA replication stress by triggering cell cycle checkpoints, repair, or death. To understand the role of the DNA damage response pathways in determining whether cells survive replication stress or become committed to death, we examined the effect of loss of these pathways on cellular response to agents that slow or arrest DNA synthesis. We show that replication inhibitors such as excess thymidine, hydroxyurea, and camptothecin are normally poor inducers of apoptosis. However, these agents become potent inducers of death in S-phase cells upon small interfering RNA-mediated depletion of the checkpoint kinase Chk1. This death response is independent of p53 and Chk2. p21-deficient cells, on the other hand, produce a more robust apoptotic response upon Chk1 depletion. p21 is normally induced only late after thymidine treatment. In Chk1-depleted cells p21 induction occurs earlier and does not require p53. Thus, Chk1 plays a primary role in the protection of cells from death induced by replication fork stress, whereas p21 mediates through its role in regulating entry into S phase. These findings are of potential importance to cancer therapy because we demonstrate that the efficacy of clinically relevant agents can be enhanced by manipulation of these signaling pathways.  相似文献   

14.
We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that the Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the α isoform of p38 MAPK (p38α MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38α MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.  相似文献   

15.
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Our previous study has shown that PNAS-4 induces S phase arrest and apoptosis when overexpressed in A549 lung cancer cells. However, the underlying action mechanism remains far from clear. In this work, we found that PNAS-4 expression in lung tumor tissues is significantly lower than that in adjacent lung tissues; its expression is significantly increased in A549 cells after exposure to cisplatin, methyl methane sulfonate, and mitomycin; and its overexpression induces S phase arrest and apoptosis in A549 (p53 WT), NCI-H460 (p53 WT), H526 (p53 mutation), and Calu-1 (p53−/−) lung cancer cells, leading to proliferation inhibition irrespective of their p53 status. The S phase arrest is associated with up-regulation of p21Waf1/Cip1 and inhibition of the Cdc25A-CDK2-cyclin E/A pathway. Up-regulation of p21Waf1/Cip1 is p53-independent and correlates with activation of ERK. We further showed that the intra-S phase checkpoint, which occurs via DNA-dependent protein kinase-mediated activation of Chk1 and Chk2, is involved in the S phase arrest and apoptosis. Gene silencing of Chk1/2 rescues, whereas that of ATM or ATR does not affect, S phase arrest and apoptosis. Furthermore, human PNAS-4 induces DNA breaks in comet assays and γ-H2AX staining. Intriguingly, caspase-dependent cleavage of Chk1 has an additional role in enhancing apoptosis. Taken together, our findings suggest a novel mechanism by which elevated PNAS-4 first causes DNA-dependent protein kinase-mediated Chk1/2 activation and then results in inhibition of the Cdc25A-CDK2-cyclin E/A pathway, ultimately causing S phase arrest and apoptosis in lung cancer cells.  相似文献   

16.
Accurate DNA replication is crucial for the maintenance of genome integrity. To this aim, cells have evolved complex surveillance mechanisms to prevent mitotic entry in the presence of partially replicated DNA. ATR and Chk1 are key elements in the signal transduction pathways of DNA replication checkpoint; however, other kinases also make significant contributions. We show here that the stress kinases p38 and JNK are activated when DNA replication is blocked, and that their activity allows S/M, but not G₂/M, checkpoint maintenance when Chk1 is inhibited. Activation of both kinases by DNA replication inhibition is not mediated by the caffeine-sensitive kinases ATR or ATM. Phosphorylation of MKK3/6 and MKK4, p38 and JNK upstream kinases was also observed upon DNA replication inhibition. Using a genetic approach, we dissected the p38 pathway and showed that both p38α and p38β isoforms collaborate to inhibit mitotic entry. We further defined MKK3/6 and MK2/3 as the key upstream and downstream elements in the p38 signaling cascade after replication arrest. Accordingly, we found that the stress signaling pathways collaborate with Chk1 to keep cyclin B1/Cdk1 complexes inactive when DNA replication is inhibited, thereby preventing cell cycle progression when DNA replication is stalled. Our results show a complex response to replication stress, where multiple pathways are activated and fulfill overlapping roles to prevent mitotic entry with unreplicated DNA.  相似文献   

17.
18.
Wang Y  Liu Q  Liu Z  Li B  Sun Z  Zhou H  Zhang X  Gong Y  Shao C 《Mutation research》2012,734(1-2):20-29
Berberine has been shown to possess anti-tumor activity against a wide spectrum of cancer cells. It inhibits cancer cell proliferation by inducing cell cycle arrest, at G1 and/or G2/M, and apoptosis. While it has been documented that berberine induces G1 arrest by activating the p53-p21 cascade, it remains unclear what mechanism underlies the berberine-induced G2/M arrest, which is p53-independent. In this study, we tested the anti-proliferative effect of berberine on murine prostate cancer cell line RM-1 and characterized the underlying mechanisms. Berberine dose-dependently induced DNA double-strand breaks and apoptosis. At low concentrations, berberine was observed to induce G1 arrest, concomitant with the activation of p53-p21 cascade. Upon exposure to berberine at a higher concentration (50μM) for 24h, cells exhibited G2/M arrest. Pharmacological inhibition of ATM by KU55933, or Chk1 by UCN-01, could efficiently abrogate the G2/M arrest in berberine-treated cells. Downregulation of Chk1 by RNA interference also abolished the G2/M arrest caused by berberine, confirming the role of Chk1 in the pathway leading to G2/M arrest. Abrogation of G2/M arrest by ATM inhibition forced more cells to undergo apoptosis in response to berberine treatment. Chk1 inhibition by UCN-01, on the other hand, rendered cells more sensitive to berberine only when p53 was inhibited. Our results suggest that combined administration of berberine and caffeine, or other ATM inhibitor, may accelerate the killing of cancer cells.  相似文献   

19.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM, and p53 signaling pathways in p53-wildtype cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53-wildtype lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wildtype and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wildtype and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell-cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号