共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kashima L Idogawa M Mita H Shitashige M Yamada T Ogi K Suzuki H Toyota M Ariga H Sasaki Y Tokino T 《The Journal of biological chemistry》2012,287(16):12975-12984
The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors. 相似文献
3.
4.
Chk1 plays a key role in regulating the replication checkpoint and DNA damage response. Recent evidence suggests that mammalian Chk1 regulates both the nuclear and cytoplasmic checkpoint events. However, mechanisms regulating cellular mobilization of Chk1 were not well understood. Here, we report the identification of regions of human Chk1 that regulate its protein cellular localization and checkpoint function. We demonstrate that the two highly conserved motifs (CM1 and CM2) at the C terminus of Chk1 function as a nuclear export signal and nuclear localization signal, respectively. Mutating five highly conserved residues within these two motifs of Chk1 resulted in its accumulation mainly in the cytoplasm. These cytoplasmic Chk1 mutants were less stable and exhibited significantly reduced phosphorylation by DNA damage treatment, yet they retained, at least partially, checkpoint function. Using an adenovirus-mediated gene targeting technique, we attempted to create an HCT116 cell line in which endogenous Chk1 is mutated so that it is expressed exclusively in the cytoplasm. However, we failed to obtain homozygous mutant cell lines. We found that even the heterozygous mutant cell lines showed cell survival defects accompanied by spontaneous cell death. Together, these results reveal novel regulatory mechanisms that couple protein cellular localization with the checkpoint response and cell viability of Chk1. 相似文献
5.
Numerous studies indicate the importance of acetylation in p53-mediated stress responses upon DNA damage. We and others previously showed that TIP60 (Tat-interacting protein of 60 kDa)-mediated acetylation of p53 at K120 is crucial for p53-dependent apoptotic responses. Nevertheless, it remains unclear how TIP60-mediated effects on p53 are dynamically regulated in vivo. Here, we report that UHRF1 (ubiquitin-like with PHD and RING finger domains 1) interacts with TIP60 both in vitro and in vivo and induces degradation-independent ubiquitination of TIP60. Moreover, UHRF1 expression markedly suppresses the ability of TIP60 to acetylate p53. In contrast, RNAi-mediated knockdown of UHRF1 increases the endogenous levels of p53 acetylation at K120 and p53-mediated apoptosis is significantly enhanced in UHRF1-depleted cells. To elucidate the mechanisms of this regulation, we found that the interaction between TIP60 and p53 is severely inhibited in the presence of UHRF1, suggesting that UHRF1 modulates TIP60-mediated functions in both K120 acetylation-dependent and -independent manners. Consistent with this notion, UHRF1 knockdown promotes activation of p21 and PUMA but not MDM2. These findings demonstrate that UHRF1 is a critical negative regulator of TIP60 and suggest that UHRF1-mediated effects on p53 may contribute, at least in part, to its role in tumorigenesis. 相似文献
6.
7.
8.
Li N Zhong X Lin X Guo J Zou L Tanyi JL Shao Z Liang S Wang LP Hwang WT Katsaros D Montone K Zhao X Zhang L 《The Journal of biological chemistry》2012,287(21):17386-17397
The RNA-binding protein LIN28A regulates the translation and stability of a large number of mRNAs as well as the biogenesis of certain miRNAs in embryonic stem cells and developing tissues. Increasing evidence indicates that LIN28A functions as an oncogene promoting cancer cell growth. However, little is known about its molecular mechanism of cell cycle regulation in cancer. Using tissue microarrays, we found that strong LIN28A expression was reactivated in about 10% (7.1-17.1%) of epithelial tumors (six tumor types, n = 369). Both in vitro and in vivo experiments demonstrate that LIN28A promotes cell cycle progression in cancer cells. Genome-wide RNA-IP-chip experiments indicate that LIN28A binds to thousands of mRNAs, including a large group of cell cycle regulatory mRNAs in cancer and embryonic stem cells. Furthermore, the ability of LIN28A to stimulate translation of LIN28A-binding mRNAs, such as CDK2, was validated in vitro and in vivo. Finally, using a combined gene expression microarray and bioinformatics approach, we found that LIN28A also regulates CCND1 and CDC25A expression and that this is mediated by inhibiting the biogenesis of let-7 miRNA. Taken together, these results demonstrate that LIN28A is reactivated in about 10% of epithelial tumors and promotes cell cycle progression by regulation of both mRNA translation (let-7-independent) and miRNA biogenesis (let-7-dependent). 相似文献
9.
The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase. 相似文献
10.
11.
Narmadha Reddy Gangula Subbareddy Maddika 《The Journal of biological chemistry》2013,288(48):34545-34554
PHLPP1 (PH domain leucine-rich repeat protein phosphatase 1) is a protein-serine/threonine phosphatase and a negative regulator of the PI3-kinase/Akt pathway. Although its function as a suppressor of tumor cell growth has been established, the mechanism of its regulation is not completely understood. In this study, by utilizing the tandem affinity purification approach we have identified WDR48 and USP12 as novel PHLPP1-associated proteins. The WDR48·USP12 complex deubiquitinates PHLPP1 and thereby enhances its protein stability. Similar to PHLPP1 function, WDR48 and USP12 negatively regulate Akt activation and thus promote cellular apoptosis. Functionally, we show that WDR48 and USP12 suppress proliferation of tumor cells. Importantly, we found a WDR48 somatic mutation (L580F) that is defective in stabilizing PHLPP1 in colorectal cancers, supporting a WDR48 role in tumor suppression. Together, our results reveal WDR48 and USP12 as novel PHLPP1 regulators and potential suppressors of tumor cell survival. 相似文献
12.
Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells 总被引:27,自引:0,他引:27
Yu-quan Wei Xia Zhao Yoshitaka Kariya Keisuke Teshigawara Atsushi Uchida 《Cancer immunology, immunotherapy : CII》1995,40(2):73-78
Tumor cells often express elevated levels of heat-shock protein (HSP) 70. The present study was designed to invesitgate the role of HSP70 in the proliferation and survival of tumor cells in the human system. When Molt-4 and other tumor cells were treated in vitro with HSP70 antisense oligomer, they displayed propidiumiodide-stained condensed nuclei (intact or fragmented). A ladder-like pattern of DNA fragments was observed with HSP70 antisense-oligomer-treated tumor cells in agrose gel electrophoresis, which was consistent with internucleosomal DNA fragmentation. Flow cytometry analysis revealed the hypodiploid DNA peak of propidium-iodide-stained nuclei in the antisense-oligomer-treated cells. The apoptosis induced by HSP antisense oligomer was dose- and time-dependent. The antisense oligomer induced apoptosis mainly in tumor cells at G1 and S phase, resulting in an inhibition of cell proliferation. HSP70 antisense oligomer caused DNA-sequence-specific inhibition of HSP70 expression, which preceded apparent apoptosis. These results indicate that HSP70 antisense treatment inhibits the expression of HSP70, which in turn inhibits cell proliferation and induces apoptosis in tumor cells and suggest that HSP70 is required for tumor cells to proliferate and survive under normal condition. 相似文献
13.
14.
Duprez L Bertrand MJ Vanden Berghe T Dondelinger Y Festjens N Vandenabeele P 《The Journal of biological chemistry》2012,287(18):14863-14872
Receptor-interacting protein kinase 1 (RIPK1) is an important component of the tumor necrosis factor receptor 1 (TNFR1) signaling pathway. Depending on the cell type and conditions, RIPK1 mediates MAPK and NF-κB activation as well as cell death. Using a mutant form of RIPK1 (RIPK1ΔID) lacking the intermediate domain (ID), we confirm the requirement of this domain for activation of these signaling events. Moreover, expression of RIPK1ΔID resulted in enhanced recruitment of caspase-8 to the TNFR1 complex II component Fas-associated death domain (FADD), which allowed a shift from TNF-induced necroptosis to apoptosis in L929 cells. Addition of the RIPK1 kinase inhibitor necrostatin-1 strongly reduced recruitment of RIPK1 and caspase-8 to FADD and subsequent apoptosis, indicating a role for RIPK1 kinase activity in apoptotic complex formation. Our study shows that RIPK1 has an anti-apoptotic function residing in its ID and demonstrates a cellular system as an elegant genetic model for RIPK1 kinase-dependent apoptosis that, in contrast to the Smac mimetic model, does not rely on depletion of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2). 相似文献
15.
Islam MR Jimenez T Pelham C Rodova M Puri S Magenheimer BS Maser RL Widmann C Calvet JP 《The Journal of biological chemistry》2010,285(50):38818-38831
16.
Mezghani-Abdelmoula S Khémiri A Lesouhaitier O Chevalier S Orange N Cazin L Feuilloley MG 《Microbiological research》2004,159(4):355-363
Previous studies have shown that Pseudomonas fluorescens and its lipopolysaccharide (LPS) exert dose-related cytotoxic effects on neurons and glial cells. In the present work, we investigated the time course effect of P. fluorescens MF37 and its LPS on cultured rat cerebellar granule neurons. The kinetics of binding of P. fluorescens to cerebellar granule neurons is rapid and reaches a mean of 3 bacteria/cell after 5 h. As demonstrated by measurement of the concentration of nitrite in the culture medium, P. fluorescens induces a rapid stimulation (3 h) of the nitric oxide synthase (NOS) activity of the cells. In contrast, LPS extracted from P. fluorescens requires a long lag phase (24 h) before observation of an activation of NOS. Measurement of the membrane resting potential of granule neurons showed that within 3 h of incubation there was no difference of effect between the action of P. fluorescens and that of its endotoxin. Two complementary approaches allowed to demonstrate that P. fluorescens MF37 presents a rapid invasive behaviour suggesting a mobilisation of calcium in its early steps of action. The present study reveals that P. fluorescens induces the sequential activation of a constitutive calcium-dependent NOS and that of an inducible NOS activated by LPS. Our results also suggest that in P. fluorescens cytotoxicity and invasion are not mutually exclusive events. 相似文献
17.
Noh JS Kang HJ Kim EY Sohn S Chung YK Kim SU Gwag BJ 《Journal of neurochemistry》2000,75(6):2327-2334
We examined patterns and mechanisms of cell death induced by haloperidol. Cortical cell cultures exposed to 10-100 microM: haloperidol for 24 h underwent neuronal death without injuring glia. The degenerating neurons showed hallmarks of apoptosis, featuring cell body shrinkage, nuclear chromatin condensation and aggregation, nuclear membrane disintegration with intact plasma membrane, and prominent internucleosomal DNA fragmentation. Neither glutamate antagonists nor antioxidants prevented the haloperidol-induced neuronal apoptosis. The c-Jun-NH(2)-terminal protein kinase and p38 mitogen-activated protein kinase were activated within 1 h and were sustained over the next 3 h following exposure of cortical neurons to 30 microM haloperidol. Haloperidol-induced neuronal apoptosis was partially attenuated by 10-30 microM PD169316, a selective inhibitor of p38 mitogen-activated protein kinase. Inclusion of 1 microg/ml cycloheximide, a protein synthesis inhibitor, or 100 ng/ml insulin prevented activation of both kinases and subsequent neuronal death. The present study demonstrates that cortical neurons exposed to haloperidol undergo apoptosis depending on activation of p38 mitogen-activated protein kinase and c-Jun-NH(2)-terminal protein kinase sensitive to cycloheximide and insulin. 相似文献
18.
Claudia Cerella Christiane Scherer Silvia Cristofanon Estelle Henry Awais Anwar Corinna Busch Mathias Montenarh Mario Dicato Claus Jacob Marc Diederich 《Apoptosis : an international journal on programmed cell death》2009,14(5):641-654
Naturally occurring organic sulfur compounds (OSCs), such as linear allylsulfides from Allium species, are attracting attention in cancer research, since several OSCs were shown to act beneficially both in chemoprevention
and in chemotherapy, while hardly exerting any harmful side effects. Hence, we investigated the possible role of different
OSCs in the treatment of leukemia. Thereby, we found that the compounds tested in this study induced apoptosis in U937 cells,
with an efficiency depending on the number of sulfides, and selected the most promising candidate, diallyltetrasulfide (Al2S4),
for detailed mechanistic studies. Here we show that Al2S4 induced an accumulation of cells in early mitosis (G2/M phase),
followed by the activation of caspase-dependent apoptosis. The compound counteracted different anti-apoptotic Bcl-2 family
members (Bcl-xL, phospho-Bad and Bcl-2), promoted activation of Bax and Bak and induced the release of cytochrome c into the cytoplasm. Treatment by Al2S4 let to the identification of early apoptotic events including Bcl-xL degradation,
Bak activation and release of cytochrome c followed by late events including Bcl-2 proteolysis, Bax activation, Bad dephosphorylation, caspase activation, nuclear fragmentation
and phosphatidylserine exposure.
Claudia Cerella and Christiane Scherer, both authors equally contributed to this work. 相似文献
19.
Cytotoxic activities of Coriolus versicolor (Yunzhi) extract on human leukemia and lymphoma cells by induction of apoptosis 总被引:3,自引:0,他引:3
Coriolus versicolor (CV), also known as Yunzhi, is one of the commonly used Chinese medicinal herbs. Although recent studies have demonstrated its antitumour activities on cancer cells in vitro and in vivo, the exact mechanism is not fully elucidated. Hence, the objective of this study was to examine the in vitro cytotoxic activities of a standardized aqueous ethanol extract prepared from Coriolus versicolor on a B-cell lymphoma (Raji) and two human promyelocytic leukemia (HL-60, NB-4) cell lines using a MTT cytotoxicity assay, and to test whether the mechanism involves induction of apoptosis. Cell death ELISA was employed to quantify the nucleosome production resulting from nuclear DNA fragmentation during apoptosis. The present results demonstrated that CV extract at 50 to 800 microg/ml dose-dependently suppressed the proliferation of Raji, NB-4, and HL-60 cells by more than 90% (p < 0.01), with ascending order of IC50 values: HL-60 (147.3 +/- 15.2 microg/ml), Raji (253.8 +/- 60.7 microg/ml) and NB-4 (269.3 +/- 12.4 microg/ml). The extract however did not exert any significant cytotoxic effect on normal liver cell line WRL (IC50 > 800 microg/ml) when compared with a chemotherapeutic anticancer drug, mitomycin C (MMC), confirming the tumour-selective cytotoxicity. Nucleosome productions in HL-60, NB-4 and Raji cells were significantly increased by 3.6-, 3.6- and 5.6-fold respectively upon the treatment of CV extract, while no significant nucleosome production was detected in extract-treated WRL cells. The CV extract was found to selectively and dose-dependently inhibit the proliferation of lymphoma and leukemic cells possibly via an apoptosis-dependent pathway. 相似文献
20.
Cheng F Cappai R Ciccotosto GD Svensson G Multhaup G Fransson LÅ Mani K 《The Journal of biological chemistry》2011,286(31):27559-27572
Amyloid β (Aβ) is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate, there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-nitrosothiol. We investigated whether these oligosaccharides interact with Aβ during APP processing and plaque formation. anMan immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C terminus of APP, but not Aβ oligomers detected by the anti-Aβ A11 antibody, colocalized with anMan immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, sodium dodecyl sulfate-stable, anMan- and Aβ-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C terminus). anMan-containing HS oligo- and disaccharide preparations modulated or suppressed A11 immunoreactivity and oligomerization of Aβ42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by 3-β[2(diethylamino)ethoxy]androst-5-en-17-one (U18666A) and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the Aβ domain and small, anMan-containing oligosaccharides may preclude formation of toxic Aβ oligomers. A portion of the oligosaccharides are co-secreted with the Aβ peptides and deposited in plaques. These results support the notion that an inadequate supply of vitamin C could contribute to late onset AD in humans. 相似文献