首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells'' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype.  相似文献   

2.
Ligands of the tumor necrosis factor superfamily (TNFSF) (4-1BBL, APRIL, BAFF, CD27L, CD30L, CD40L, EDA1, EDA2, FasL, GITRL, LIGHT, lymphotoxin alpha, lymphotoxin alphabeta, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL) bind members of the TNF receptor superfamily (TNFRSF). A comprehensive survey of ligand-receptor interactions was performed using a flow cytometry-based assay. All ligands engaged between one and five receptors, whereas most receptors only bound one to three ligands. The receptors DR6, RELT, TROY, NGFR, and mouse TNFRH3 did not interact with any of the known TNFSF ligands, suggesting that they either bind other types of ligands, function in a ligand-independent manner, or bind ligands that remain to be identified. The study revealed that ligand-receptor pairs are either cross-reactive between human and mouse (e.g. Tweak/Fn14, RANK/RANKL), strictly species-specific (GITR/GITRL), or partially species-specific (e.g. OX40/OX40L, CD40/CD40L). Interestingly, the receptor binding patterns of lymphotoxin alpha and alphabeta are redundant in the human but not in the mouse system. Ligand oligomerization allowed detection of weak interactions, such as that of human TNF with mouse TNFR2. In addition, mouse APRIL exists as two different splice variants differing by a single amino acid. Although human APRIL does not interact with BAFF-R, the shorter variant of mouse APRIL exhibits weak but detectable binding to mouse BAFF-R.  相似文献   

3.
The TNF family cytokines BAFF (B-cell activating factor of the TNF family) and APRIL (a proliferation-inducing ligand) are crucial survival factors for B-cell development and activation. B-cell directed treatments have been shown to improve atopic eczema (AE), suggesting the involvement of these cytokines in the pathogenesis of AE. We therefore analyzed the expression of these TNF cytokines in AE, seborrheic eczema (SE) and healthy controls (HC). The serum/plasma concentration of BAFF, APRIL and a close TNF member TWEAK (TNF-like weak inducer of apoptosis) was measured by ELISA. The expression of these cytokines and their receptors in skin was analyzed by quantitative RT-PCR and immunofluorescence. Unlike other inflammatory diseases including autoimmune diseases and asthma, the circulating levels of BAFF, APRIL and TWEAK were not elevated in AE or SE patients compared with HCs and did not correlate with the disease severity or systemic IgE levels in AE patients. Interestingly, we found that the expression of these cytokines and their receptors was altered in positive atopy patch test reactions in AE patients (APT-AE) and in lesional skin of AE and SE patients. The expression of APRIL was decreased and the expression of BAFF was increased in eczema skin of AE and SE, which could contribute to a reduced negative regulatory input on B-cells. This was found to be more pronounced in APT-AE, the initiating acute stage of AE, which may result in dysregulation of over-activated B-cells. Furthermore, the expression levels of TWEAK and its receptor positively correlated to each other in SE lesions, but inversely correlated in AE lesions. These results shed light on potential pathogenic roles of these TNF factors in AE and SE, and pinpoint a potential of tailored treatments towards these factors in AE and SE.  相似文献   

4.
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.  相似文献   

5.
B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.  相似文献   

6.
The TNF superfamily (TNFSF) of proteins are cytokines involved in diverse immunological and developmental pathways. Little is known about their evolution or expression in lower vertebrate species. Bioinformatic searches of Zebrafish, Tetraodon, and Fugu genome and other teleost expressed sequence tag databases identified 44 novel gene sequences containing a TNF homology domain. This work reveals the following: 1) teleosts possess orthologs of BAFF, APRIL, EDA, TWEAK, 4-1BBL, Fas ligand, LIGHT, CD40L, RANKL, and possibly TL1A; 2) the BAFF-APRIL subfamily is enriched by a third member, BALM, unique to fish; 3) orthologs of lymphotoxins alpha and beta were not clearly identified in teleosts and are substituted by a related ligand, TNF-New; 4) as many as four TRAIL-like genes are present in teleosts, as compared with only one in mammals; and 5) T cell activation ligands OX40L, CD27L, CD30L, and GITRL were not identified in any fish species. Finally, we characterize mRNA expression of TNFSF members CD40L, LIGHT, BALM, APRIL, Fas ligand, RANKL, TRAIL-like, and TNF-New in rainbow trout, Oncorhynchus mykiss, immune and nonimmune tissues. In conclusion, we identified a total of 14 distinct TNFSF members in fishes, indicating expansion of this superfamily before the divergence of bony fish and tetrapods, approximately 360-450 million years ago. Based on these findings, we extend a model of TNFSF evolution and the co-emergence of the vertebrate adaptive immune system.  相似文献   

7.
Chronic lymphocytic leukemia (CLL) is a clonal B cell disorder of unknown origin. Accessory signals from the microenvironment are critical for the survival, expansion, and progression of malignant B cells. We found that the CLL stroma included microvascular endothelial cells (MVECs) expressing BAFF and APRIL, two TNF family members related to the T cell-associated B cell-stimulating molecule CD40L. Constitutive release of soluble BAFF and APRIL increased upon engagement of CD40 on MVECs by CD40L aberrantly expressed on CLL cells. In addition to enhancing MVEC expression of CD40, leukemic CD40L induced cleavases that elicited intracellular processing of pro-BAFF and pro-APRIL proteins in MVECs. The resulting soluble BAFF and APRIL proteins delivered survival, activation, Ig gene remodeling, and differentiation signals by stimulating CLL cells through TACI, BAFF-R, and BCMA receptors. BAFF and APRIL further amplified CLL cell survival by upregulating the expression of leukemic CD40L. Inhibition of TACI, BCMA, and BAFF-R expression on CLL cells; abrogation of CD40 expression in MVECs; or suppression of BAFF and APRIL cleavases in MVECs reduced the survival and diversification of malignant B cells. These data indicate that BAFF, APRIL, and CD40L form a CLL-enhancing bidirectional signaling network linking neoplastic B cells with the microvascular stroma.  相似文献   

8.
The TNF family members BAFF and APRIL: the growing complexity   总被引:19,自引:0,他引:19  
B cell activating factor belonging to the TNF family (BAFF) and apoptosis-inducing ligand (APRIL) are two related members of the TNF ligand superfamily. Although they share two receptors, TACI and BCMA, transgenic and knockout mice in this system reveal that their functions are not redundant. BAFF is a critical survival/maturation factor for peripheral B cells and this activity is mediated through a BAFF-specific receptor, BAFF-R. Overexpression of BAFF has been linked to autoimmune disease and aspects of B cell neoplasia. APRIL appears to play a role in T-independent type II antigen responses and T cell survival, but can also induce proliferation/survival of non-lymphoid cells. Elevated expression of APRIL has been found in some tumor cell lines and in tumor tissue libraries. Therapies designed to inhibit the BAFF and APRIL pathways holds great promise for the future.  相似文献   

9.
Myeloid cells express the TNF family ligands BAFF/BLyS and APRIL, which exert their effects on B cells at different stages of differentiation via the receptors BAFFR, TACI (Transmembrane Activator and CAML-Interactor) and/or BCMA (B Cell Maturation Antigen). BAFF and APRIL are proteins expressed at the cell membrane, with both extracellular and intracellular domains. Therefore, receptor/ligand engagement may also result in signals in ligand-expressing cells via so-called “reverse signalling”. In order to understand how TACI-Fc (atacicept) technically may mediate immune stimulation instead of suppression, we investigated its potential to activate reverse signalling through BAFF and APRIL. BAFFR-Fc and TACI-Fc, but not Fn14-Fc, reproducibly stimulated the ERK and other signalling pathways in bone marrow-derived mouse macrophages. However, these effects were independent of BAFF or APRIL since the same activation profile was observed with BAFF- or APRIL-deficient cells. Instead, cell activation correlated with the presence of high molecular mass forms of BAFFR-Fc and TACI-Fc and was strongly impaired in macrophages deficient for Fc receptor gamma chain. Moreover, a TACI-Fc defective for Fc receptor binding elicited no detectable signal. Although these results do not formally rule out the existence of BAFF or APRIL reverse signalling (via pathways not tested in this study), they provide no evidence in support of reverse signalling and point to the importance of using appropriate specificity controls when working with Fc receptor-expressing myeloid cells.  相似文献   

10.
Development and activation of B cells quickly became clear after identifying new ligands and receptors in the tumor necrosis factor superfamily. B cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) are the members of membrane proteins Type 2 family released by proteolytic cleavage of furin to form active, soluble homotrimers. Except for B cells, ligands are expressed by all such immune cells like T cells, dendritic cells, monocytes, and macrophages. BAFF and APRIL have two common receptors, namely TNFR homolog transmembrane activator and Ca2+ modulator and CAML interactor (TACI) and B cell–maturation antigen. BAFF alone can also be coupled with a third receptor called BAFFR (also called BR3 or BLyS Receptor). These receptors are often expressed by immune cells in the B-cell lineage. The binding of BAFF or APRIL to their receptors supports B cells differentiation and proliferation, immunoglobulin production and the upregulation of B cell–effector molecules expression. It is possible that the overexpression of BAFF and APRIL contributes to the pathogenesis of autoimmune diseases. In BAFF transgenic mice, there is a pseudo-autoimmune manifestation, which is associated with an increase in B-lymphocytes, hyperglobulinemia, anti-single stranded DNA, and anti-double-stranded DNA antibodies, and immune complexes in their peripheral blood. Furthermore, overexpressing BAFF augments the number of peripheral B220+ B cells with a normal proliferation rate, high levels of Bcl2, and prolonged survival and hyperactivity. Therefore, in this review article, we studied BAFF and APRIL as important mediators in B-cell and discussed their role in rheumatoid arthritis.  相似文献   

11.
TWEAK, a cytokine of the TNF family, has been found to be expressed under different inflammatory conditions but no data is available concerning the expression of this cytokine and its receptor (Fn14) in human obesity. In the present work we have evaluated the expression of many pro-inflammatory TNF system cytokines (TNF-alpha, TWEAK and their respective receptors, TNFR1, TNFR2 and Fn14) in human adipose tissue of 84 subjects some with different degree of obesity and type 2 diabetes, and its relation with inflammation by also measuring the expression of macrophage marker CD68. We detected expression of TWEAK and Fn14 in isolated mature adipocytes and in the stromovascular fraction. Additionally, we found that LPS upregulates the expression of both genes on THP-1 human monocytic cell line. TWEAK was expressed in adipose tissue of all studied subjects with no differences between obesity group, and was associated with Fn14 expression in morbid obese, mainly in women with type 2 diabetes. The data obtained here also showed that TNF-alpha and TNFR2 mRNAs were significantly more expressed in subcutaneous adipose tissue of subjects with morbid obesity compared to obese and non-obese subjects. In contrast, TNFR1 gene expression was negatively associated with BMI. Our results suggest that the expression of TNF-derived pro-inflammatory cytokines are increased in severe obesity, where macrophage infiltrate could modulate the inflammatory environment through activation of its receptors.  相似文献   

12.
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.  相似文献   

13.
Hu S  Tamada K  Ni J  Vincenz C  Chen L 《Genomics》1999,62(1):103-107
By searching the expressed sequence tag database, a novel murine tumor necrosis factor receptor designated TNFRSF19 was identified. TNFRSF19 cDNA encodes a putative membrane protein of 348 amino acids with one incomplete and two complete cysteine-rich motifs within its extracellular region and a large cytoplasmic domain. TNFRSF19 mRNA can be detected in most murine tissues examined, particularly in brain, reproductive organs, and late developmental stages of murine embryo, but not in tissues of the immune system. The cell surface expression of the ligand of TNFRSF19 is highly restricted. Of 22 human and murine cell lines examined by FACS analysis, only Raji (B cell lymphoma cell line), GM847 (fibroblast cell line), 293 (embryonic kidney cell line), and K562 (chronic myeloid leukemia) were positive. TNFRSF19 did not bind newly cloned TNF ligands, including TWEAK (HGMW-approved symbol TNFSF12), VEGI/TL1 (HGMW-approved symbol TNFSF15), TL6/endokine (HGMW-approved symbol TNFSF18), APRIL (HGMW-approved symbol TNFSF13), OPGL (HGMW-approved symbol TNFSF11), LIGHT (HGMW-approved symbol TNFSF14), or BAFF/THANK (HGMW-approved symbol TNFSF13B) by enzyme-linked immunosorbent assay and FACS analyses. Overexpression of TNFRSF19 transduced neither apoptotic signaling nor signals leading to NF-kappaB induction. Taken together with the data that the TNFRSF19 extracellular domain-immunoglobulin fusion protein did not affect the allogeneic mixed lymphocyte reaction, our data indicate that TNFRSF19 is not involved in the modulation of immune responses.  相似文献   

14.
TWEAK is a cytokine of the TNF superfamily that activates the Fn14 receptor. TWEAK may regulate cell proliferation, cell death, cell differentiation, angiogenesis and inflammation. The expression of TWEAK and Fn14 is increased during vascular and renal injury. Inflammatory cytokines increase Fn14 receptor expression in tubular and vascular smooth muscle cells. Moreover, TWEAK induces tubular cell apoptosis under proinflammatory conditions. TWEAK itself contributes to renal and vascular inflammation by promoting chemokine and inflammatory cytokine secretion. Confirmation of its role in acute kidney injury and atherosclerotic lesions formation came from functional studies in experimental animal models. The available evidence suggests that TWEAK might be a target for therapeutic intervention in renal and vascular injury and its role in different forms of tissue damage should be further explored.  相似文献   

15.
B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor superfamily of cytokines and can induce B cell activation, differentiation, and antibody production via interaction with their receptors, including transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and B-cell activating factor receptor (BAFF-R). Herein, we assessed the plasma protein levels of BAFF and APRIL in patients with asthma to determine whether their expression is correlated with total IgE production and examined the surface expression of BAFF/APRIL receptors on B cells. Blood samples were collected from 47 patients with controlled asthma symptoms and 20 healthy normal controls, and plasma levels of APRIL, BAFF, and total IgE protein were quantified by corresponding ELISA assays. Furthermore, lymphocytes were isolated and B cells were analyzed for the presence of BAFF-R, BCMA, and TACI receptors using flow cytometry. Our results showed that IgE, BAFF, and APRIL plasma levels were markedly increased in patients with asthma compared with healthy controls. Moreover, expression of BAFF-R and BCMA, but not that of TACI, was significantly increased in patients with asthma compared with healthy controls. Overall, the findings suggest BAFF and APRIL as key mediators of asthma, and determination of their plasma levels may be useful in monitoring asthma symptoms and treatment response.  相似文献   

16.
First described as a weak apoptosis inducer, the TNF superfamily ligand TWEAK has since emerged as a cytokine that regulates multiple cellular responses, including proinflammatory activity, angiogenesis and cell proliferation, suggesting roles in inflammation and cancer. More recently TWEAK's ability to regulate progenitor cell fate was elucidated. Experiments using genetic overexpression and pathway inhibition or deficiency in mice indicate that TWEAK coordinates inflammatory and progenitor cell responses in settings of acute injury through its highly inducible receptor, FGF-inducible molecule 14 (Fn14), establishing the pathway's physiological role in facilitating acute tissue repair. In contrast, in chronic inflammatory disease models characterized by persistent TWEAK/Fn14 activation, TWEAK functions as a novel pathogenic mediator by amplifying inflammation, promoting tissue damage and potentially impeding endogenous repair mechanisms. Herein we aim not only to review the multifaceted functions of this emerging pathway, but also propose a conceptual framework for TWEAK/Fn14 pathway function in health and disease, supported by studies employing TWEAK and Fn14 deficient mice and anti-TWEAK blocking mAbs in acute injury and inflammatory disease settings. In addition to a perspective of the biology, we discuss potential therapeutic strategies targeting this pathway for the treatment of tissue injury, chronic inflammatory diseases and cancer.  相似文献   

17.
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TWEAK) is a pro-inflammatory and pro-angiogenic cytokine implicated in physiological tissue regeneration and wound repair. TWEAK binds to a 102-amino acid type I transmembrane cell surface receptor named fibroblast growth factor-inducible 14 (Fn14). TWEAK:Fn14 engagement activates several intracellular signaling cascades, including the NF-κB pathway, and sustained Fn14 signaling has been implicated in the pathogenesis of chronic inflammatory diseases and cancer. Although several groups are developing TWEAK- or Fn14-targeted agents for therapeutic use, much more basic science research is required before we fully understand the TWEAK/Fn14 signaling axis. For example, we and others have proposed that TWEAK-independent Fn14 signaling may occur in cells when Fn14 levels are highly elevated, but this idea has never been tested directly. In this report, we first demonstrate TWEAK-independent Fn14 signaling by showing that an Fn14 deletion mutant that is unable to bind TWEAK can activate the NF-κB pathway in transfected cells. We then show that ectopically-expressed, cell surface-localized Fn14 can self-associate into Fn14 dimers, and we show that Fn14 self-association is mediated by an 18-aa region within the Fn14 cytoplasmic domain. Endogenously-expressed Fn14 as well as ectopically-overexpressed Fn14 could also be detected in dimeric form when cell lysates were subjected to SDS-PAGE under non-reducing conditions. Additional experiments revealed that Fn14 dimerization occurs during cell lysis via formation of an intermolecular disulfide bond at cysteine residue 122. These findings provide insight into the Fn14 signaling mechanism and may aid current studies to develop therapeutic agents targeting this small cell surface receptor.  相似文献   

18.
19.
TNF-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily, is a prominent inducer of proinflammatory cytokines in vitro and in vivo. We previously found that kidney cells display the TWEAK receptor Fn14, and that TWEAK stimulation of mesangial cells and podocytes induces a potent proinflammatory response. Several of the cytokines up-regulated in the kidney in response to TWEAK are instrumental in Lupus nephritis; we therefore hypothesized that TWEAK/Fn14 interactions may be important in the cascade(s) leading to renal damage in systemic Lupus erythematosus. In this study, we analyzed the effects of Fn14 deficiency in the chronic graft-vs-host model of SLE, and the benefits of treatment with an anti-TWEAK mAb in this mouse model. We found that anti-nuclear Ab titers were no different between C57BL/6 Fn14 wild-type and deficient mice injected with alloreactive bm12 splenocytes. However, kidney disease was significantly less severe in Fn14 knockout mice. Furthermore, kidney IgG deposition, IL-6, MCP-1, RANTES, and IP-10, as well as macrophage infiltration, were significantly decreased in Fn14-deficient mice with induced lupus. Similarly, mice with induced Lupus treated with an anti-TWEAK neutralizing mAb had significantly diminished kidney expression of IL-6, MCP-1, IL-10, as well as proteinuria, but similar autoantibody titers, as compared with control-treated mice. We conclude that TWEAK is an important mediator of kidney damage that acts by promoting local inflammatory events, but without impacting adaptive immunity in this experimental LN model. Thus, TWEAK blockade may be a novel therapeutic approach to reduce renal damage in SLE.  相似文献   

20.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号