首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testing transgenes for insect resistance using Arabidopsis   总被引:5,自引:0,他引:5  
One possible strategy to delay the selection of resistant insect populations is the pyramiding of multiple resistance genes into a single cultivar. However, the transformation of most major crops remains prohibitively expensive if a large number of transgene combinations are to be evaluated. Arabidopsis thaliana is a potentially good plant for such preliminary evaluations. We determined that four major agricultural pests, Spodoptera exigua, Helicoverpa zea, Pseudoplusia includens, and Heliothis virescens grew as well when feeding on Landsberg Erecta Arabidopsis as they did on plants of Cobb soybean. Landsberg Erecta was then transformed with either a synthetic Bacillus thuringiensis cryIA(c) gene, or the cowpea trypsin inhibitor gene. Transformed plants were crossed to produce plants transgenic for both genes. Following quantification of transgene expression, the four caterpillar species were allowed to feed on wild-type plants, plants expressing either cryIA(c) or the cowpea trypsin inhibitor gene, or plants expressing both. Both genes reduced growth of the species tested, but cryIA(c) was more effective in controlling caterpillar growth than the cowpea trypsin inhibitor gene. The resistance of plants with both transgenes was lower than that of plants expressing the cryIA(c) gene alone, but higher than that of plants expressing the only the CpTI gene. This could be due to a lower concentration of Cry protein in the hemizygous F1 plants. Thus, if the cowpea trypsin inhibitor had any potentiation effect on cryIA(c), this effect was less than the cryIA(c) copy number effect. Alternatively, expression of the trypsin inhibitor gene could be antagonistic to the function of the cryIA(c) gene. Either way, these results suggest that the combined use of these two genes may not be effective.  相似文献   

2.
SUMMARY: Determination of transgene location is essential for investigating the effects of position on transgene expression levels and facilitates cloning of the resident gene affected by insertion. Currently used PCR-based approaches for determination of transgene location are relatively complicated and often fail when the transgene is duplicated, rearranged or fragmented. HideNseek is a new bioinformatics tool that allows computation of transgene locations, provided that a suitable genomic restriction enzyme digestion profile is available. Since the new approach is not based on the terminal sequences of the transgene insert, it is less sensitive to transgene duplication, rearrangement or fragmentation. HideNseek has been tested experimentally and by in silico simulation. The experimental example provided here shows that this simple approach is feasible, permitting rapid location of transgenes with little bench work. AVAILABILITY: available on request from the authors. SUPPLEMENTARY DATA: HideNseek input and output examples, experimental procedures and figures showing experimental results are provided as supplementary files: Supplementary material 1, 2, 3 and Supplementary figures (Figs 1 and 2), respectively. Supplementary data is available at Bioinformatics online.  相似文献   

3.
GLABRA3 (GL3) encodes a bHLH protein that interacts with the WD repeat protein, TTG1. GL3 overexpression suppresses the trichome defect of the pleiotropic ttg1 mutations. However, single gl3 mutations only affect the trichome pathway with a modest trichome number reduction. A novel unlinked bHLH-encoding locus is described here, ENHANCER OF GLABRA3 (EGL3). When mutated, egl3 gives totally glabrous plants only in the gl3 mutant background. The double bHLH mutant, gl3 egl3, has a pleiotropic phenotype like ttg1 having defective anthocyanin production, seed coat mucilage production, and position-dependent root hair spacing. Furthermore, the triple bHLH mutant, gl3 egl3 tt8, phenocopies the ttg1 mutation. Yeast two-hybrid and plant overexpression studies show that EGL3, like GL3, interacts with TTG1, the myb proteins GL1, PAP1 and 2, CPC and TRY, and it will form heterodimers with GL3. These results suggest a combinatorial model for TTG1-dependent pathway regulation by this trio of partially functionally redundant bHLH proteins.  相似文献   

4.
Two-component signal transduction pathways in Arabidopsis   总被引:19,自引:0,他引:19       下载免费PDF全文
Hwang I  Chen HC  Sheen J 《Plant physiology》2002,129(2):500-515
The two-component system, consisting of a histidine (His) protein kinase that senses a signal input and a response regulator that mediates the output, is an ancient and evolutionarily conserved signaling mechanism in prokaryotes and eukaryotes. The identification of 54 His protein kinases, His-containing phosphotransfer proteins, response regulators, and related proteins in Arabidopsis suggests an important role of two-component phosphorelay in plant signal transduction. Recent studies indicate that two-component elements are involved in plant hormone, stress, and light signaling. In this review, we present a genome analysis of the Arabidopsis two-component elements and summarize the major advances in our understanding of Arabidopsis two-component signaling.  相似文献   

5.
6.
Biosynthetic pathways of brassinolide in Arabidopsis   总被引:5,自引:0,他引:5       下载免费PDF全文
Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not been fully confirmed in this species. This paper describes metabolic studies using deuterium-labeled BRs in wild-type and BR-insensitive mutant (bri1) seedlings to establish the intermediates of the biosynthetic pathway of BL in Arabidopsis. The first evidence for the conversion of campestanol to 6-deoxocathasterone and the conversion of 6-deoxocathasterone to 6-deoxoteasterone is provided. The later biosynthetic steps (6-deoxoteasterone --> 3-dehydro-6-deoxoteasterone --> 6-deoxotyphasterol --> 6-deoxocastasterone --> 6alpha-hydroxycastasterone --> castasterone --> BL) were demonstrated by stepwise metabolic experiments. Therefore, these studies complete the documentation of the late C6-oxidation pathway. The biosynthetic sequence involved in the early C6-oxidation pathway (teasterone --> 3-dehydroteasterone --> typhasterol --> castasterone --> BL) was also demonstrated. These results show that both the early and late C6-oxidation pathways are functional in Arabidopsis. In addition we report two new observations: the presence of a new branch in the pathway, C6 oxidation of 6-deoxotyphasterol to typhasterol, and increased metabolic flow in BR-insensitive mutants.  相似文献   

7.
8.
9.
10.
11.
12.
Molecular Biology Reports - The cauliflower mosaic virus (CaMV) 35S promoter is known as the most frequently used promoter in plant biotechnology. Although it is widely considered to be a strong...  相似文献   

13.
14.
15.
Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Endophytic actinobacteria, isolated from healthy wheat tissue, which are capable of suppressing a number wheat fungal pathogens both in vitro and in planta, were investigated for the ability to activate key genes in the systemic acquired resistance (SAR) or the jasmonate/ethylene (JA/ET) pathways in Arabidopsis thaliana. Inoculation of A. thaliana (Col-0) with selected endophytic strains induced a low level of SAR and JA/ET gene expression, measured using quantitative polymerase chain reaction. Upon pathogen challenge, endophyte-treated plants demonstrated a higher abundance of defense gene expression compared with the non-endophyte-treated controls. Resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora required the JA/ET pathway. On the other hand, resistance to the fungal pathogen Fusarium oxysporum involved primarily the SAR pathway. The endophytic actinobacteria appear to be able to "prime" both the SAR and JA/ET pathways, upregulating genes in either pathway depending on the infecting pathogen. Culture filtrates of the endophytic actinobacteria were investigated for the ability to also activate defense pathways. The culture filtrate of Micromonospora sp. strain EN43 grown in a minimal medium resulted in the induction of the SAR pathway; however, when grown in a complex medium, the JA/ET pathway was activated. Further analysis using Streptomyces sp. strain EN27 and defense-compromised mutants of A. thaliana indicated that resistance to E. carotovora subsp. carotovora occurred via an NPR1-independent pathway and required salicylic acid whereas the JA/ET signaling molecules were not essential. In contrast, resistance to F. oxysporum mediated by Streptomyces sp. strain EN27 occurred via an NPR1-dependent pathway but also required salicylic acid and was JA/ET independent.  相似文献   

16.
17.
We compared the organ specificity and the strength of different constitutive (CaMV-35S, CaMV-35Somega, Arabidopsis ubiquitin UBQ1, and barley leaf thionin BTH6 promoter) and one inducible promoter (soybean heat-shock promoter Gmshp17.3) in stably transformed Arabidopsis thaliana plants. For this purpose we constructed a set of plant expression vectors equipped with the different promoters. Using the uidA reporter gene we could show that the CaMV-35S promoter has the highest expression level which was enhanced two-to threefold by the addition of a translational enhancer (TMV omega element) without altering the organ specificity of the promoter. The barley leaf thionin promoter was almost inactive in the majority of lines whereas the ubiquitin promoter exhibited an intermediate strength. The heat-shock promoter was inducible up to 18-fold but absolute levels were lower than in the case of the ubiquitin promoter. Conclusive quantitative results for different organs and developmental stages were obtained by the analysis of 24 stably transformed lines per promoter construct.  相似文献   

18.
19.
 A model system based on the Arabidopsis thaliana (L.) Heynh. Ws ecotype and its naturally colonizing Pseudomonas thivervalensis rhizobacteria was defined. Pseudomonas strains colonizing A. thaliana were found to modify the root architecture either in vivo or in vitro. A gnotobiotic system using bacteria labelled with green fluorescent protein revealed that P. thivervalensis exhibited a colonization profile similar to that of other rhizobacterial species. Mutants of A.thaliana affected in root hair development and possible hormone perception were used to analyze the plant genetic determinants of bacterial colonization. A screen for mutants insensitive to P. thivervalensis colonization yielded two mutants found to be auxin resistant. This further supports a proposed role for bacterial auxin in inducing morphological modifications of roots. This work paves the way for studying the interaction between plants and non-pathogenic rhizobacteria in a gnotobiotic system, derived from a natural association, where interactions between both partners can be genetically dissected. Received: 6 January 2000 / Accepted: 20 May 2000  相似文献   

20.
Biochemical specialization within Arabidopsis RNA silencing pathways   总被引:1,自引:0,他引:1  
Qi Y  Denli AM  Hannon GJ 《Molecular cell》2005,19(3):421-428
In plants, the RNA silencing machinery responds to numerous inputs, including viral infection, microRNAs, and endogenous siRNAs that may act both in trans and in cis. Additionally, the full spectrum of silencing outcomes has been demonstrated in plants, ranging from mRNA degradation to repression at the level of protein synthesis to chromatin remodeling. Genetic studies in Arabidopsis have indicated that individual response pathways are functionally compartmentalized. However, to date, no biochemical systems have been available to investigate the roles of specific proteins within silencing pathways or the effects of selected mutations on the biochemical activity of those components. Here, we describe the generation of Arabidopsis extracts that reproduce many aspects of RNA silencing reactions in vitro. We find that specific members of the Dicer and Argonaute families have distinct biochemical activities, which provides insight into their roles within RNA silencing pathways in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号