共查询到20条相似文献,搜索用时 0 毫秒
1.
Structural studies of ribosome complexes with bound tRNAs and release factors show considerable contacts between these factors and helix 69 (H69) of 23 S rRNA. Although biochemical and genetic studies have provided some general insights into the role of H69 in tRNA and RF selection, a detailed understanding of these contributions remains elusive. Here, we present a pre- steady-state kinetic analysis establishing that two distinct regions of H69 make critical contributions to substrate selection. The loop of H69 (A1913) forms contacts necessary for the efficient accommodation of a subset of natural tRNA species, whereas the base of the stem (G1922) is specifically critical for UGA codon recognition by the class 1 release factor RF2. These data define a broad and critical role for this centrally located intersubunit helix (H69) in accurate and efficient substrate recognition by the ribosome. 相似文献
2.
The universally conserved His-66 of elongation factor Tu (EF-Tu) stacks on the side chain of the esterified Phe of Phe-tRNA(Phe). The affinities of eight aminoacyl-tRNAs were differentially destabilized by the introduction of the H66A mutation into Escherichia coli EF-Tu, whereas Ala-tRNA(Ala) and Gly-tRNA(Gly) were unaffected. The H66F and H66W proteins each show a different pattern of binding of 10 different aminoacyl-tRNAs, clearly showing that this position is critical in establishing the specificity of EF-Tu for different esterified amino acids. However, the H66A mutation does not greatly affect the ability of the ternary complex to bind ribosomes, hydrolyze GTP, or form dipeptide, suggesting that this residue does not directly participate in ribosomal decoding. Selective mutation of His-66 may improve the ability of certain unnatural amino acids to be incorporated by the ribosome. 相似文献
3.
4.
William C. Merrick 《The Journal of biological chemistry》2010,285(28):21197-21201
5.
Sec-tRNA(Sec) is site-specifically delivered at defined UGA codons in selenoprotein mRNAs. This recoding event is specified by the selenocysteine insertion sequence (SECIS) element and requires the selenocysteine (Sec)-specific elongation factor, eEFSec, and the SECIS binding protein, SBP2. Sec-tRNA(Sec) is delivered to the ribosome by eEFSec-GTP, but this ternary complex is not sufficient for Sec incorporation, indicating that its access to the ribosomal A-site is regulated. SBP2 stably associates with ribosomes, and mutagenic analysis indicates that this interaction is essential for Sec incorporation. However, the ribosomal function of SBP2 has not been elucidated. To shed light on the functional relevance of the SBP2-ribosome interaction, we screened the functional centers of the 28 S rRNA in translationally competent 80 S ribosomes using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). We demonstrate that SBP2 specifically alters the reactivity of specific residues in Helix 89 (H89) and expansion segment 31 (ES31). These results are indicative of a conformational change in response to SBP2 binding. Based on the known functions of H89 during translation, we propose that SBP2 allows Sec incorporation by either promoting Sec-tRNA(Sec) accommodation into the peptidyltransferase center and/or by stimulating the ribosome-dependent GTPase activity of eEFSec. 相似文献
6.
Pilar Martin-Marcos Jagpreet Nanda Rafael E. Luna Gerhard Wagner Jon R. Lorsch Alan G. Hinnebusch 《The Journal of biological chemistry》2013,288(38):27546-27562
Recognition of the translation initiation codon is thought to require dissociation of eIF1 from the 40 S ribosomal subunit, enabling irreversible GTP hydrolysis (Pi release) by the eIF2·GTP·Met-tRNAi ternary complex (TC), rearrangement of the 40 S subunit to a closed conformation incompatible with scanning, and stable binding of Met-tRNAi to the P site. The crystal structure of a Tetrahymena 40 S·eIF1 complex revealed several basic amino acids in eIF1 contacting 18 S rRNA, and we tested the prediction that their counterparts in yeast eIF1 are required to prevent premature eIF1 dissociation from scanning ribosomes at non-AUG triplets. Supporting this idea, substituting Lys-60 in helix α1, or either Lys-37 or Arg-33 in β-hairpin loop-1, impairs binding of yeast eIF1 to 40 S·eIF1A complexes in vitro, and it confers increased initiation at UUG codons (Sui− phenotype) or lethality, in a manner suppressed by overexpressing the mutant proteins or by an eIF1A mutation (17–21) known to impede eIF1 dissociation in vitro. The eIF1 Sui− mutations also derepress translation of GCN4 mRNA, indicating impaired ternary complex loading, and this Gcd− phenotype is likewise suppressed by eIF1 overexpression or the 17–21 mutation. These findings indicate that direct contacts of eIF1 with 18 S rRNA seen in the Tetrahymena 40 S·eIF1 complex are crucial in yeast to stabilize the open conformation of the 40 S subunit and are required for rapid TC loading and ribosomal scanning and to impede rearrangement to the closed complex at non-AUG codons. Finally, we implicate the unstructured N-terminal tail of eIF1 in blocking rearrangement to the closed conformation in the scanning preinitiation complex. 相似文献
7.
Devin Camenares Daniel P. Dulebohn Anton Svetlanov A. Wali Karzai 《The Journal of biological chemistry》2013,288(42):30527-30542
Unproductive ribosome stalling in eubacteria is resolved by the actions of SmpB protein and transfer messenger (tm) RNA. We examined the functional significance of conserved regions of SmpB and tmRNA to the trans-translation process. Our investigations reveal that the N-terminal 20 residues of SmpB, which are located near the ribosomal decoding center, are dispensable for all known SmpB activities. In contrast, a set of conserved residues that reside at the junction between the tmRNA-binding core and the C-terminal tail of SmpB play an important role in tmRNA accommodation. Our data suggest that the highly conserved glycine 132 acts as a flexible hinge that enables movement of the C-terminal tail, thus permitting proper positioning and establishment of the tmRNA open reading frame (ORF) as the surrogate template. To gain further insights into the function of the SmpB C-terminal tail, we examined the tagging activity of hybrid variants of tmRNA and the SmpB protein, in which the tmRNA ORF or the SmpB C-terminal tail was substituted with the equivalent but highly divergent sequences from Francisella tularensis. We observed that the hybrid tmRNA was active but resulted in less accurate selection of the resume codon. Cognate hybrid SmpB was necessary to restore activity. Furthermore, accurate tagging was observed when the identity of the resume codon was reverted from GGC to GCA. Taken together, these data suggest that the engagement of the tmRNA ORF and the selection of the correct translation resumption point are distinct activities that are influenced by independent tmRNA and SmpB determinants. 相似文献
8.
tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition 总被引:3,自引:0,他引:3
The structure, phylogeny and in vivo function of the base pair formed between nucleotides 32 and 38 of the tRNA anticodon loop are reviewed. The A32-U38 pair, which is highly conserved in tRNA2(Ala) and sometimes observed in tRNA2(Pro), was recently found to decrease the affinity of tRNAs to the ribosomal A site relative to other 32-38 combinations. This suggests that the role of 32-38 pair is to tune the tRNA affinity in the A site to a uniform value. New experiments presented here show that the U32C mutation in tRNA1(Gly) increases its affinity to the cognate codon and to codons with third position mismatches in the A site. This suggests that one reason for uniform tRNA binding to evolve was to avoid incorrect codon recognition. 相似文献
9.
Jonathan N. Gonzalez-Flores Nirupama Gupta Louise W. DeMong Paul R. Copeland 《The Journal of biological chemistry》2012,287(46):38936-38945
The selenocysteine (Sec)-specific eukaryotic elongation factor (eEFSec) delivers the aminoacylated selenocysteine-tRNA (Sec-tRNASec) to the ribosome and suppresses UGA codons that are upstream of Sec insertion sequence (SECIS) elements bound by SECIS-binding protein 2 (SBP2). Multiple studies have highlighted the importance of SBP2 forming a complex with the SECIS element, but it is not clear how this regulates eEFSec during Sec incorporation. Compared with the canonical elongation factor eEF1A, eEFSec has a unique C-terminal extension called Domain IV. To understand the role of Domain IV in Sec incorporation, we examined a series of mutant proteins for all of the known molecular functions for eEFSec: GTP hydrolysis, Sec-tRNASec binding, and SBP2/SECIS binding. In addition, wild-type and mutant versions of eEFSec were analyzed for Sec incorporation activity in a novel eEFSec-dependent translation extract. We have found that Domain IV is essential for both tRNA and SBP2 binding as well as regulating GTPase activity. We propose a model where the SBP2/SECIS complex activates eEFSec by directing functional interactions between Domain IV and the ribosome to promote Sec-tRNASec binding and accommodation into the ribosomal A-site. 相似文献
10.
Awai T Ochi A Ihsanawati Sengoku T Hirata A Bessho Y Yokoyama S Hori H 《The Journal of biological chemistry》2011,286(40):35236-35246
Archaeal and eukaryotic tRNA (N(2),N(2)-guanine)-dimethyltransferase (Trm1) produces N(2),N(2)-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Trm1, although there is a zinc-cysteine cluster in the C-terminal domain of A. aeolicus Trm1. The N-terminal domain is a typical catalytic domain of S-adenosyl-l-methionine-dependent methyltransferases. On the basis of the crystal structure and amino acid sequence alignment, we prepared 30 mutant Trm1 proteins. These mutant proteins clarified residues important for S-adenosyl-l-methionine binding and enabled us to propose a hypothetical reaction mechanism. Furthermore, the tRNA-binding site was also elucidated by methyl transfer assay and gel mobility shift assay. The electrostatic potential surface models of A. aeolicus and archaeal Trm1 proteins demonstrated that the distribution of positive charges differs between the two proteins. We constructed a tRNA-docking model, in which the T-arm structure was placed onto the large area of positive charge, which is the expected tRNA-binding site, of A. aeolicus Trm1. In this model, the target G26 base can be placed near the catalytic pocket; however, the nucleotide at position 27 gains closer access to the pocket. Thus, this docking model introduces a rational explanation of the multisite specificity of A. aeolicus Trm1. 相似文献
11.
Michael T. Howard Bradley A. Carlson Christine B. Anderson Dolph L. Hatfield 《The Journal of biological chemistry》2013,288(27):19401-19413
Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins. 相似文献
12.
Spears JL Rubio MA Gaston KW Wywial E Strikoudis A Bujnicki JM Papavasiliou FN Alfonzo JD 《The Journal of biological chemistry》2011,286(23):20366-20374
Editing of adenosine (A) to inosine (I) at the first anticodon position in tRNA is catalyzed by adenosine deaminases acting on tRNA (ADATs). This essential reaction in bacteria and eukarya permits a single tRNA to decode multiple codons. Bacterial ADATa is a homodimer with two bound essential Zn(2+). The ADATa crystal structure revealed residues important for substrate binding and catalysis; however, such high resolution structural information is not available for eukaryotic tRNA deaminases. Despite significant sequence similarity among deaminases, we continue to uncover unexpected functional differences between Trypanosoma brucei ADAT2/3 (TbADAT2/3) and its bacterial counterpart. Previously, we demonstrated that TbADAT2/3 is unique in catalyzing two different deamination reactions. Here we show by kinetic analyses and inductively coupled plasma emission spectrometry that wild type TbADAT2/3 coordinates two Zn(2+) per heterodimer, but unlike any other tRNA deaminase, mutation of one of the key Zn(2+)-coordinating cysteines in TbADAT2 yields a functional enzyme with a single-bound zinc. These data suggest that, at least, TbADAT3 may play a role in catalysis via direct coordination of the catalytic Zn(2+). These observations raise the possibility of an unusual Zn(2+) coordination interface with important implications for the function and evolution of editing deaminases. 相似文献
13.
Ryota Yamagami Koki Yamashita Hiroshi Nishimasu Chie Tomikawa Anna Ochi Chikako Iwashita Akira Hirata Ryuichiro Ishitani Osamu Nureki Hiroyuki Hori 《The Journal of biological chemistry》2012,287(51):42480-42494
The conserved U54 in tRNA is often modified to 5-methyluridine (m5U) and forms a reverse Hoogsteen base pair with A58 that stabilizes the L-shaped tRNA structure. In Gram-positive and some Gram-negative eubacteria, m5U54 is produced by folate/FAD-dependent tRNA (m5U54) methyltransferase (TrmFO). TrmFO utilizes N5,N10-methylenetetrahydrofolate (CH2THF) as a methyl donor. We previously reported an in vitro TrmFO assay system, in which unstable [14C]CH2THF was supplied from [14C]serine and tetrahydrofolate by serine hydroxymethyltransferase. In the current study, we have improved the TrmFO assay system by optimization of enzyme and substrate concentrations and introduction of a filter assay system. Using this assay, we have focused on the tRNA recognition mechanism of TrmFO. 42 tRNA mutant variants were prepared, and experiments with truncated tRNA and microhelix RNAs revealed that the minimum requirement of TrmFO exists in the T-arm structure. The positive determinants for TrmFO were found to be the U54U55C56 sequence and G53-C61 base pair. The gel mobility shift assay and fluorescence quenching showed that the affinity of TrmFO for tRNA in the initial binding process is weak. The inhibition experiments showed that the methylated tRNA is released before the structural change process. Furthermore, we found that A38 prevents incorrect methylation of U32 in the anticodon loop. Moreover, the m1A58 modification clearly accelerates the TrmFO reaction, suggesting a synergistic effect of the m5U54, m1A58, and s2U54 modifications on m5s2U54 formation in Thermus thermophilus cells. The docking model of TrmFO and the T-arm showed that the G53-C61 base pair is not able to directly contact the enzyme. 相似文献
14.
Apart from its canonical function in translation elongation, eukaryotic translation elongation factor 1A (eEF1A) has been shown to interact with the actin cytoskeleton. Amino acid substitutions in eEF1A that reduce its ability to bind and bundle actin in vitro cause improper actin organization in vivo and reduce total translation. Initial in vivo analysis indicated the reduced translation was through initiation. The mutant strains exhibit increased levels of phosphorylated initiation factor 2α (eIF2α) dependent on the presence of the general control nonderepressible 2 (Gcn2p) protein kinase. Gcn2p causes down-regulation of total protein synthesis at initiation in response to increases in deacylated tRNA levels in the cell. Increased levels of eIF2α phosphorylation are not due to a general reduction in translation elongation as eEF2 and eEF3 mutants do not exhibit this effect. Deletion of GCN2 from the eEF1A actin bundling mutant strains revealed a second defect in translation. The eEF1A actin-bundling proteins exhibit changes in their elongation activity at the level of aminoacyl-tRNA binding in vitro. These findings implicate eEF1A in a feedback mechanism for regulating translation at initiation. 相似文献
15.
Sanbonmatsu KY 《Biochimie》2006,88(8):1075-1089
Transfer RNAs (tRNAs) are the adaptor molecules that allow the ribosome to decode genetic information during protein synthesis. During decoding, the ribosome must chose the tRNA whose anticodon corresponds to the codon inscribed in the messenger RNA to incorporate the correct amino acid into the growing polypeptide chain. Fidelity is improved dramatically by a GTP hydrolysis event. Information about the correctness of the anticodon must be sent from the decoding center to the elongation factor, EF-Tu, where the GTP hydrolysis takes place. A second discrimination event entails the accommodation of the aminoacyl-tRNA into its fully bound A/A state inside the ribosome. Here, we present a hypothesis for a specific mechanism of signal transduction through the tRNA, which operates during GTPase activation and accommodation. We propose that the rigidity of the tRNA plays an important role in the transmission of the decoding signal. While the tRNA must flex during binding and accommodation, its anisotropic stiffness enables precise positioning of the acceptor arm in the A/T state, the A/A state and the accommodation corridor. Correct alignment will result in optimal GTPase activation and accommodation rates. Incorrect tRNAs, however, whose anticodons are misaligned, will also have acceptor arms that are misaligned, resulting in sub-optimal GTPase activation and accommodation rates. In the case of GTPase activation, it is possible that the misalignment of the acceptor arm affects the rate directly, by altering the conformational change of the switch region of EF-Tu, or indirectly, by changing the alignment of EF-Tu with respect to the sarcin-ricin loop (SRL) of the large ribosomal subunit. 相似文献
16.
Sergey E. Dmitriev Ilya M. Terenin Dmitri E. Andreev Pavel A. Ivanov Jacov E. Dunaevsky William C. Merrick Ivan N. Shatsky 《The Journal of biological chemistry》2010,285(35):26779-26787
During translation, aminoacyl-tRNAs are delivered to the ribosome by specialized GTPases called translation factors. Here, we report the tRNA binding to the P-site of 40 S ribosomes by a novel GTP-independent factor eIF2D isolated from mammalian cells. The binding of tRNAiMet occurs after the AUG codon finds its position in the P-site of 40 S ribosomes, the situation that takes place during initiation complex formation on the hepatitis C virus internal ribosome entry site or on some other specific RNAs (leaderless mRNA and A-rich mRNAs with relaxed scanning dependence). Its activity in tRNA binding with 40 S subunits does not require the presence of the aminoacyl moiety. Moreover, the factor possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40 S subunit. The corresponding gene is found in all eukaryotes and includes an SUI1 domain present also in translation initiation factor eIF1. The versatility of translation initiation strategies in eukaryotes is discussed. 相似文献
17.
Anna Ochi Koki Makabe Ryota Yamagami Akira Hirata Reiko Sakaguchi Ya-Ming Hou Kazunori Watanabe Osamu Nureki Kunihiro Kuwajima Hiroyuki Hori 《The Journal of biological chemistry》2013,288(35):25562-25574
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2′-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination. 相似文献
18.
Saheb Dutta 《Journal of biomolecular structure & dynamics》2019,37(2):336-358
Lacunae of understanding exist concerning the active site organization during the charging step of the aminoacylation reaction. We present here a molecular dynamics simulation study of the dynamics of the active site organization during charging step of subclass IIa dimeric SerRS from Thermus thermophilus (ttSerRS) bound with tttRNASer and dimeric ThrRS from Escherichia coli (ecThrRS) bound with ectRNAThr. The interactions between the catalytically important loops and tRNA contribute to the change in dynamics of tRNA in free and bound states, respectively. These interactions help in the development of catalytically effective organization of the active site. The A76 end of the tttRNASer exhibits fast dynamics in free State, which is significantly slowed down within the active site bound with adenylate. The loops change their conformation via multimodal dynamics (a slow diffusive mode of nanosecond time scale and fast librational mode of dynamics in picosecond time scale). The active site residues of the motif 2 loop approach the proximal bases of tRNA and adenylate by slow diffusive motion (in nanosecond time scale) and make conformational changes of the respective side chains via ultrafast librational motion to develop precise hydrogen bond geometry. Presence of bound Mg2+ ions around tRNA and dynamically slow bound water are other common features of both aaRSs. The presence of dynamically rigid Zinc ion coordination sphere and bipartite mode of recognition of ectRNAThr are observed. 相似文献
19.
Florian Cymer Rickard Hedman Nurzian Ismail Gunnar von Heijne 《The Journal of biological chemistry》2015,290(16):10208-10215
Translational arrest peptides (APs) are short stretches of polypeptides that induce translational stalling when synthesized on a ribosome. Mechanical pulling forces acting on the nascent chain can weaken or even abolish stalling. APs can therefore be used as in vivo force sensors, making it possible to measure the forces that act on a nascent chain during translation with single-residue resolution. It is also possible to score the relative strengths of APs by subjecting them to a given pulling force and ranking them according to stalling efficiency. Using the latter approach, we now report an extensive mutagenesis scan of a strong mutant variant of the Mannheimia succiniciproducens SecM AP and identify mutations that further increase the stalling efficiency. Combining three such mutations, we designed an AP that withstands the strongest pulling force we are able to generate at present. We further show that diproline stretches in a nascent protein act as very strong APs when translation is carried out in the absence of elongation factor P. Our findings highlight critical residues in APs, show that certain amino acid sequences induce very strong translational arrest and provide a toolbox of APs of varying strengths that can be used for in vivo force measurements. 相似文献
20.
Medha Raina Adil Moghal Amanda Kano Mathew Jerums Paul D. Schnier Shun Luo Rohini Deshpande Pavel V. Bondarenko Henry Lin Michael Ibba 《The Journal of biological chemistry》2014,289(25):17780-17790
Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, no significant change in cellular viability was observed. Monitoring of Phe and Tyr levels revealed that changes in error rates correlated with changes in amino acid pools, suggesting that mischarging of tRNATyr with noncognate Phe by tyrosyl-tRNA synthetase was responsible for mistranslation. Steady-state kinetic analyses of CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold lower specificity for Tyr over Phe as compared with previously characterized bacterial enzymes, consistent with the observed increase in translation error rates during tyrosine limitation. Functional comparisons of mammalian and bacterial tyrosyl-tRNA synthetase revealed key differences at residues responsible for amino acid recognition, highlighting differences in evolutionary constraints for translation quality control. 相似文献