首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The selenium-dependent glutathione peroxidase activities of two human cell lines, the colon carcinoma HT29 and the mesothelioma P31, cultured in medium containing 2% serum, increased from 195 to 541 and from 94 to 361 units/mg of protein respectively after supplementation with 100 nM-selenite. The catalase activity remained unchanged by this treatment. The effects of the obtained variation in glutathione peroxidase activities were investigated by exposing cells to H2O2 and t-butyl hydroperoxide. Selenite supplementation resulted in a decrease in H2O2-induced DNA single-strand breaks in both HT29 and P31 cells. A small, but significant, decrease in the number of DNA single-strand breaks for low doses (10-50 microM) of t-butyl hydroperoxide was found only in P31 cells and not in HT29 cells. We could detect neither induction of double-strand breaks (detection limit approx. 1000 breaks per cell) nor DNA-protein cross-links after exposing the cells to the two peroxides. In spite of the apparent protective effect of increased glutathione peroxidase activity on DNA single-strand break formation, there were no differences between selenite-supplemented and non-supplemented cells in cell survival after exposure to peroxide.  相似文献   

3.
4.
Using high-resolution oxygraphy, we tested the changes of various parameters characterizing the mitochondrial energy provision system that were induced by peroxidative damage. In the presence of succinate as respiratory substrate, 3 mM t-butyl hydroperoxide increased respiration in the absence of ADP, which indicated partial uncoupling of oxidative phosphorylation. Low activity of coupled respiration was still maintained as indicated by the ADP-activated and oligomycin-inhibited respiration. However, during the incubation the phosphorylative capacity decreased as indicated by the continuous decrease of the mitochondrial membrane potential. Under these experimental conditions the maximum capacity of the succinate oxidase system was inhibited by 50% in comparison with values obtained in the absence of t-butyl hydroperoxide. Our data thus indicate that the oxygraphic evaluation of mitochondrial function represents a useful tool for evaluation of changes participating in peroxidative damage of cell energy metabolism.  相似文献   

5.
6.
In rat alveolar macrophages treated with 100 microM t-butyl hydroperoxide (tBOOH), leukotriene B4 (LTB4) synthesis was significantly lower than the basal level while levels of cyclooxygenase pathway products were increased. LTB4, 5,6-dihydroxyeicosatetraenoic acid (5,6-DiHETEs), and 5-hydroxyeicosatetraenoic acid (5-HETE) production in macrophages was significantly stimulated by 2 microM A23187, but this was suppressed 40% by simultaneous addition of 10 microM tBOOH and completely abolished by 100 microM tBOOH. Basal and A23187-stimulated macrophage production of chemotactic agents were similarly suppressed by addition of tBOOH; this effect paralleled depression of cellular LTB4 synthesis. In contrast to the significant depression of A23187-stimulated formation of 5-lipoxygenase products by 10 microM tBOOH, cellular adenosine triphosphate (ATP) was unchanged. Macrophages pretreated with KCN led to a 42% decline in ATP levels; however, LTB4, 5,6-DiHETEs, and 5-HETE production in response to A23187 was not suppressed. The results indicate that inhibition of 5-lipoxygenase pathway products in macrophages treated with tBOOH did not occur by depletion of cellular ATP levels.  相似文献   

7.
Ketoacid oxidation in rat liver mitochondria was very sensitive to t-butyl hydroperoxide (t-BuOOH). Furthermore, 2-oxoglutarate and pyruvate each enhanced t-BuOOH-induced oxidative stresses of mitochondria, such as oxidation of pyridine nucleotides and GSH, inhibition of respiration with the other NAD-linked substrates, and peroxidation of mitochondrial lipids. We provide evidence that the t-BuOOH and ketoacid-induced effects are due to the failure of supply of NADH by 2-oxoglutarate dehydrogenase, and report the inactivation of the dehydrogenase in mitochondria by simultaneous addition of 2-oxoglutarate and t-BuOOH. Using the purified enzyme, we confirmed that t-BuOOH-induced inactivation of 2-oxoglutarate dehydrogenase was enhanced by its substrate and thiamine pyrophosphate protected the dehydrogenase from the inactivation. In contrast, succinate-dependent oxidation of mitochondria was not only scarcely affected by t-BuOOH, but also succinate protected against inactivation of 2-oxoglutarate dehydrogenase by t-BuOOH in mitochondria.  相似文献   

8.
9.
Ellagic acid, a plant polyphenol, showed protective effect on isolated rat hepatocytes against destruction due to lipid peroxide formation induced by t-butyl hydroperoxide in vitro. Ellagic acid inhibited the generation of superoxide anions and hydroxyl radicals both in enzymic and non enzymic systems, thus providing protection against oxidative damage.  相似文献   

10.
Hydrogen peroxide appears to mask the chemical characteristics of indoleacetic acid. This was demonstrated by the Salkowski and Fluorescence tests. Stem elongation and root initiation were inhibited as a result of adding H2O2 to nutrient media containing IAA, however, upon the addition of purified catalase, most of the symptoms of IAA inactivation were reversed. It is suggested that in vivo IAA may be regulated partially by its conjugation with H2O2, and catalase may have a role in the IAA reactivation process. The accumulation of hydrogen peroxide in the cells as a result of catalase inhibition may lead to a temporary IAA inactivation, therefore effecting plant growth.  相似文献   

11.
Caspases have an active site cysteine whose oxidation blocks catalytic activity. Caspase activity, measured in lysates of apoptotic cells, was inhibited by H2O2 with an IC50 of 7 microM. Recombinant caspase-3 was directly inhibited by H2O2, with an estimated second-order rate constant of 750 M-1 s-1. These values were determined when H2O2 was added while the caspases were cleaving a peptide substrate. There was a 40-fold decrease in sensitivity to inactivation if the substrate was absent at the time of H2O2 addition. These results rationalise conflicting reports of the sensitivity of caspase-3 to H2O2, and identify a novel mechanism for sensitising a thiol enzyme to oxidative inactivation.  相似文献   

12.
Inactivation rate of purified oligomeric cytochrome P-450 LM2 has been investigated in glucose oxidase system and under the action of exogenous hydrogen peroxide (400 microM). It has been found that hydrogen peroxide has a distinct inactivating effect on cytochrome P-450. The enzyme inactivation is accompanied by the loss of heme and the decrease in SH-group content in the protein molecule. Benzphetamine, a substrate specific for this enzyme isoform, exerts a protective effect by decreasing the rate of cytochrome P-450 inactivation and SH-group oxidation. Similar results have been obtained during the investigation of cytochrome P-450 inactivation in the monomerized system. It has been found that the inactivation process is accompanied by the formation of the enzyme aggregates. The changes in the aggregate state are due to the formation of intermolecular covalent bonds.  相似文献   

13.
The effects of t-butyl hydroperoxide on glutathione and NADPH and the respiratory burst (an NADPH-dependent function) in rat alveolar macrophages was investigated. Alveolar macrophages were exposed for 15 min to t-butyl hydroperoxide in the presence or absence of added glucose. Cells were then assayed for concanavalin A-stimulated O2 production or for NADPH, NADP, reduced glutathione, glutathione disulfide, glutathione released into the medium and glutathione mixed disulfides. Exposure of rat alveolar macrophages to 1 X 10(-5) M t-butyl hydroperoxide causes a loss of concanavalin A-stimulated superoxide production (the respiratory burst) that can be prevented or reversed by added glucose. Cells incubated without glucose had a higher oxidation state of the NADPH/NADP couple than cells incubated with glucose. With t-butyl hydroperoxide, NADP rose to almost 100% of the NADP + NADPH pool; however, addition of glucose prevented this alteration of the NADPH oxidation state. Cells exposed to 1 X 10(-5) M t-butyl hydroperoxide in the absence of glucose showed a significant increase in the percentage GSSG in the GSH + GSSG pool and increased glutathione mixed disulfides. These changes in glutathione distribution could also be prevented or reversed by glucose. With 1 X 10(-4) M t-butyl hydroperoxide, changes in glutathione oxidation were not prevented by glucose and cells were irreversibly damaged. We conclude that drastic alteration of the NADPH/NADP ratio does not itself reflect toxicity and that significant alteration of glutathione distribution can also be tolerated; however, when oxidative stress exceeds the ability of glucose to prevent alterations in oxidation state, irreversible damage to cell function and structure may occur.  相似文献   

14.
Oxidised cytochrome c oxidase is known to react with two molecules of hydrogen peroxide to form consecutively 607 nm 'Peroxy' and 580-nm 'Ferryl' species. These are widely used as model compounds for the equivalent P and F intermediates of the catalytic cycle. However, kinetic analysis of the reaction with H(2)O(2) in the pH range 6.0-9.0 reveals a more complex situation. In particular, as the pH is lowered, a 580-nm compound can be formed by reaction with a single H(2)O(2). This species, termed F(&z.rad;), is spectrally similar, but not identical, to F. The reactions are equivalent to those previously reported for the bo type quinol oxidase from Escherichia coli (T. Brittain, R.H. Little, C. Greenwood, N.J. Watmough, FEBS Lett. 399 (1996) 21-25) where it was proposed that F(&z.rad;) is produced directly from P. However, in the bovine oxidase F(&z.rad;) does not appear in samples of the 607-nm form, P(M), produced by CO/O(2) treatment, even at low pH, although this form is shown to be identical to the H(2)O(2)-derived P state, P(H), on the basis of spectral characteristics and kinetics of reaction with H(2)O(2). Furthermore, lowering the pH of a sample of P(M) or P(H) generated at high pH results in F(&z.rad;) formation only on a minutes time scale. It is concluded that P and F(&z.rad;) are not in a rapid, pH-dependent equilibrium, but instead are formed by distinct pathways and cannot interconvert in a simple manner, and that the crucial difference between them lies in their patterns of protonation.  相似文献   

15.
The reaction of H2O2 with reduced cytochrome c oxidase was investigated with rapid-scan/stopped-flow techniques. The results show that the oxidation rate of cytochrome a3 was dependent upon the peroxide concentration (k = 2 X 10(4) M-1 X s-1). Cytochrome a and CuA were oxidised with a maximal rate of approx. 20 s-1, indicating that the rate of internal electron transfer was much slower with H2O2 as the electron acceptor than with O2 (k greater than or equal to 700 s-1). Although other explanations are possible, this result strongly suggests that in the catalytic cycle with oxygen as a substrate the internal electron-transfer rate is enhanced by the formation of a peroxo-intermediate at the cytochrome a3-CuB site. It is shown that H2O2 took up two electrons per molecule. The reaction of H2O2 with oxidised cytochrome c oxidase was also studied. It is shown that pulsed oxidase readily reacted with H2O2 (k approximately 700 M-1 X s-1). Peroxide binding is followed by an H2O2-independent conformational change (k = 0.9 s-1). Resting oxidase partially bound H2O2 with a rate similar to that of pulsed oxidase; after H2O2 binding the resting enzyme was converted into the pulsed conformation in a peroxide-independent step (k = 0.2 s-1). Within 5 min, 55% of the resting enzyme reacted in a slower process. We conclude from the results that oxygenated cytochrome c oxidase probably is an enzyme-peroxide complex.  相似文献   

16.
Using pulse radiolysis, the rate constant for the reaction of ferric myeloperoxidase with O2- to give compound III was measured at pH 7.8, and values of 2.1.10(6) M-1.s-1 for equine ferric myeloperoxidase and 1.1.10(6) M-1.s-1 for human ferric myeloperoxidase were obtained. Under the same conditions, the rate constant for the reaction of human ferric myeloperoxidase with H2O2 to give compound I was 3.1.10(7) M-1.s-1. Our results indicate that although the reaction of ferric myeloperoxidase with O2- is an order of magnitude slower than with H2O2, the former reaction is sufficiently rapid to influence myeloperoxidase-dependent production of hypochlorous acid by stimulated neutrophils.  相似文献   

17.
Reactions of ferric horseradish peroxidase with hydrogen cyanide and hydrogen peroxide were studied as a function of pressure. Activation volumes are small and differ in sign (delta V = 1.7 +/- 0.5 ml/mol for peroxidase + HCN and -1.5 +/- 0.5 ml/mol for peroxidase + H2O2). The temperature dependence of cyanide binding to horseradish peroxidase was also determined. A comparison is made of relevant parameters for cyanide binding and compound I formation.  相似文献   

18.
J D Rush  W H Koppenol 《FEBS letters》1990,275(1-2):114-116
Rate constants for the reactions of cumyl hydroperoxide and t-butyl hydroperoxide with ferrous complexes of ATP and citrate were measured at pH 7.4. These ligands are potential chelators of iron(II) in the low-molecular weight iron pool that may catalyze oxidative degradation of biomolecules. The second-order rate constants for the reduction of cumyl hydroperoxide and t-butyl hydroperoxide by ferrous ATP are 3.1 x 10(3) and 1.3 x 10(3) M-1.s-1, respectively, at 25 degrees C and 0.11 M ionic strength. Rates of reduction by ferrous citrate are similar. Activation enthalpies for these reactions average 10 kcal/mol.  相似文献   

19.
The role of phospholipase A2 (PlA2) in lipid peroxidation induced with t-butyl hydroperoxide was examined in rat liver microsomes. Exposure of microsomes to t-butyl hydroperoxide was associated with activation of endogenous PlA2. When PlA2 was inhibited with chlorpromazine, mepacrine, or p-bromphenacyl bromide, the accumulation of thiobarbituric acid reactive substances (TBARS) was reduced in a dose dependent manner. In contrast, the accumulation of conjugated dienes was not affected by chlorpromazine, and was slightly increased by mepacrine. When endogenous PlA2 was activated with mellitin prior to induction of peroxidation, accumulation of both TBARS and dienes was reduced. Analogously, pretreatment with exogenous PlA2 reduced both dienes and TBARS. In contrast, addition of mellitin following the induction of peroxidation did not alter either TBARS or dienes.  相似文献   

20.
We have investigated the effects of H2O2 (150 or 300 microM) on the ultrastructure and permeability of the pulmonary endothelium in rat lungs perfused for 60 min with buffered Hanks' bovine serum albumin medium. In one group of experiments, we examined the effect of H2O2 on the uptake and transport of cationized ferritin (CF) by endothelial cells in intra-acinar arteries, alveolar capillaries, and interlobular veins. The influence of the oxidant on endothelial adsorptive endocytic processes was assessed by measuring the density of ferritin particles in luminal vesicles, multivesicular bodies, and basal lamina. In a second group of experiments, we examined the effects of H2O2 on the fine structure and permeability to electron-dense macromolecules of arterial, microvascular, and venous endothelium. For this purpose, at the end of the 60-min perfusion with H2O2, CF was perfused to identify leaky vessels. We found that H2O2 caused a dose-dependent inhibition of transcytosis of CF in all vascular segments. At the lower dose of H2O2, inhibition of transcytotic activity was not associated with structural injury to the vascular endothelium or with elevation of wet-to-dry ratios. At the higher oxidant dose, inhibition of transcytosis was associated with leaky arterial endothelium and elevation of wet-to-dry ratios (6.44 +/- 0.12 vs. 5.64 +/- 0.16, P less than 0.02). The effects of H2)2 were prevented by adding catalase to the perfusate. The selective loss of structural integrity and leakiness of the arterial endothelium were diminished but not completely abolished by perfusing the oxidant retrograde from the venous side.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号