首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Keratins are a family of structurally related proteins that form the intermediate filament cytoskeleton in epithelial cells. Mutations in K1 and K5 result in the autosomal dominant disorders epidermolytic hyperkeratosis/bullous congenital ichthyosiform erythroderma and epidermolysis bullosa simplex, respectively. Most disease-associated mutations are within exons encoding protein domains involved in keratin filament assembly. However, some mutations occur outside the mutation hot-spots and may perturb intermolecular interactions between keratins and other proteins, usually with milder clinical consequences. To screen the entire keratin 1 and keratin 5 genes we have characterized their intron-exon organization. The keratin 1 gene comprises 9 exons spanning approximately 5.6 kb on 12q, and the keratin 5 gene comprises 9 exons spanning approximately 6.1 kb on 12q. We have also developed a comprehensive PCR-based mutation detection strategy using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

2.
The desmosomal cadherins comprise the desmocollins and desmogleins and are involved in epithelial cell-cell adhesion. There are three desmocollins (DSC 1-3) and three desmogleins (DSG 1-3) that are expressed in a tissue- and development-specific manner. Desmosomal proteins have been implicated in a number of disorders characterized by loss of cell-cell adhesion and trauma-induced skin fragility. Therefore, the desmocollins are potential candidates for genodermatoses involving epithelial tissues. In order to screen the entire DSC1 and DSC3 genes, we have characterized their intron-exon organization. The DSC1 gene comprises 17 exons spanning approximately 33 kb on 18q12.1, and the DSC3 gene comprises 17 exons spanning approximately 49 kb on 18q12.1. We have also developed a comprehensive PCR-based mutation detection strategy for desmocollins 1, 2, and 3 using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

3.
Four different genomic clones which contain the genes coding for epidermal keratins Ia (mol. wt. approximately 68 000), Ib (68 000), III (60 000) and VIb (54 500) have been selected using cDNA probes and identified by hybrid-selection translation. The genes vary considerably in length, primarily due to differences in intron sizes: keratin Ia, 9.3 kb (approximately 2.55 kb total exons); keratin Ib, 6.0 kb (2.25 kb exons); keratin III, 6.0 kb (2.2 kb exons); keratin VIb, 4.4 kb (1.85 kb exons). The genes for all three representatives of the basic (type II) cytokeratin subfamily, i.e., keratins Ia, Ib and III, contain eight introns of variable sizes (0.1-1.8 kb) and their exon patterns are very similar. The gene coding for keratin VIb, a representative of the acidic (type I) subfamily, contains seven introns, and the size pattern of its five innermost exons closely resembles that of the genes of the type II keratins. Most of the introns are located in regions coding for the alpha-helical cores of these proteins. Mapping of the intron positions by the S1 nuclease technique and sequencing of some exon-intron boundaries has revealed that some of the introns of all four keratin genes have similar positions to each other and to those of the hamster vimentin gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Advances in the area of synthesis and genetic regulation of keratin by the wool-creating structures of the skin, i.e., the hair follicles, is generalized. It is stated that differentiation of the cells of the hair bulb matrix, like normal growth of hair, requires the coordinated action of numerous genes, in particular, the expression of genes associated with synthesis of structural proteins. It is shown that all the keratin genes of the follicle are clustered in families and occupy approximately 5–10 kb in the genome. At the present time certain clusters of two families of IF genes (intermediate hair proteins) along with five families of KAR genes (keratin-associated proteins) have been mapped. The close relations that exist between these clusters give us a basis for claiming that “global” regulator domains are capable of regulating their expression.  相似文献   

5.
In this review article the data about synthesis and gene regulation of keratin by hair follicles have been summarized. It has been shown that both differentiation of hair follicle matrix cells and normal growth of hair require the coordinated activities of the genes encoding structural proteins. The keratin genes are clustered in families and are usually 5-10 kb in the genome. The separate clusters of two keratin IF gene families and five KAP gene families have been discovered and some of them have been mapped. The close relation between these clusters suggests that the "global" regulatory domains might govern their expression.  相似文献   

6.
7.
8.
9.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

10.
Glucuronidation is a major pathway of androgen metabolism and is catalyzed by UDP-glucuronosyltransferase (UGT) enzymes. UGT2B15 and UGT2B17 are 95% identical in primary structure, and are expressed in steroid target tissues where they conjugate C19 steroids. Despite the similarities, their regulation of expression are different; however, the promoter region and genomic structure of only the UGT2B17 gene have been characterizedX to date. To isolate the UGT2B15 gene and other novel steroid-conjugating UGT2B genes, eight P-1-derived artificial chromosomes (PAC) clones varying in length from 30 kb to 165 kb were isolated. The entire UGT2B15 gene was isolated and characterized from the PAC clone 21598 of 165 kb. The UGT2B15 and UGT2B17 genes are highly conserved, are both composed of six exons spanning approximately 25 kb, have identical exon sizes and have identical exon-intron boundaries. The homology between the two genes extend into the 5'-flanking region, and contain several conserved putative cis-acting elements including Pbx-1, C/EBP, AP-1, Oct-1 and NF/kappaB. However, transfection studies revealed differences in basal promoter activity between the two genes, which correspond to regions containing non-conserved potential elements. The high degree of homology in the 5'-flanking region between the two genes is lost upstream of -1662 in UGT2B15, and suggests a site of genetic recombination involved in duplication of UGT2B genes. Fluorescence in situ hybridization mapped the UGT2B15 gene to chromosome 4q13.3-21.1. The other PAC clones isolated contain exons from the UGT2B4, UGT2B11 and UGT2B17 genes. Five novel exons, which are highly homologous to the exon 1 of known UGT2B genes, were also identified; however, these exons contain premature stop codons and represent the first recognized pseudogenes of the UGT2B family. The localization of highly homologous UGT2B genes and pseudogenes as a cluster on chromosome 4q13 reveals the complex nature of this gene locus, and other novel homologous UGT2B genes encoding steroid conjugating enzymes are likely to be found in this region of the genome.  相似文献   

11.
Low stringency screening of a human P1 artificial chromosome library using a human hair keratin-associated protein (hKAP1.1A) gene probe resulted in the isolation of six P1 artificial chromosome clones. End sequencing and EMBO/GenBank(TM) data base analysis showed these clones to be contained in four previously sequenced human bacterial artificial chromosome clones present on chromosome 17q12-21 and arrayed into two large contigs of 290 and 225 kilobase pairs (kb) in size. A fifth, partially sequenced human bacterial artificial chromosome clone data base sequence overlapped and closed both of these contigs. One end of this 600-kb cluster harbored six gene loci for previously described human type I hair keratin genes. The other end of this cluster contained the human type I cytokeratin K20 and K12 gene loci. The center of the cluster, starting 35 kb downstream of the hHa3-I hair keratin gene, contained 37 genes for high/ultrahigh sulfur hair keratin-associated proteins (KAPs), which could be divided into a total of 7 KAP multigene families based on amino acid homology comparisons with previously identified sheep, mouse, and rabbit KAPs. To date, 26 human KAP cDNA clones have been isolated through screening of an arrayed human scalp cDNA library by means of specific 3'-noncoding region polymerase chain reaction probes derived from the identified KAP gene sequences. This screening also yielded four additional cDNA sequences whose genes were not present on this gene cluster but belonged to specific KAP gene families present on this contig. Hair follicle in situ hybridization data for single members of five different KAP multigene families all showed localization of the respective mRNAs to the upper cortex of the hair shaft.  相似文献   

12.
Keratins are cytoskeletal proteins that provide structural support to epithelial cells and tissues. Perturbation causes cell and tissue fragility and accounts for a large number of genetic disorders in humans. In humans, 54 functional keratin genes exist and 21 different keratin genes including hair keratins and hair follicle-specific epithelial keratins have been associated with hereditary disorders. Moreover, keratins have been implicated in more complex traits such as liver disease and inflammatory bowel disease. Understanding the molecular basis of keratin disorders has been the basis for improved diagnosis with prognostic implications, genetic counseling and prenatal testing for severe disorders. Besides their mechanical role, keratins have newly identified functions in apoptosis, cell growth, tissue polarity, wound healing and tissue remodeling. Improved understanding of the regulatory functions of keratins may offer novel approaches to overcome current treatment limitations.  相似文献   

13.
We isolated two new keratin cDNAs by screening a cDNA library constructed from poly(A)+ RNA of the dorsal and abdominal skin of C57BL/10J mice with a probe of human KRT14. Due to its high sequence homology to human keratin 17 cDNA, one full-length cDNA is most likely to be mouse keratin 17 (Krt1-17) cDNA. The other is the putative full-length cDNA of a novel type I keratin gene, designated Krt1-c29. These two keratin genes were mapped to the distal portion of Chromosome 11, where the mouse keratin gene complex-1 (Krt1) is localized. To elucidate the genomic organization of Krt1 in mice, we carried out genetic and physical analyses of Krt1. A large-scale linkage analysis using intersubspecific backcrosses suggested that there are two major clusters in Krt1, one containing Krt1-c29, Krt1-10, and Krt1-12 and the other containing Krt1-14, -15, -17, and -19. Truncation experiments with two yeast artificial chromosome clones containing the two clusters above have revealed that the gene order of Krt1 is centromere-Krt1-c29-Krt1-10-Krt1-12-Krt1-13-K rt1-15-Krt1-19-Krt1-14-K rt1-17-telomere. Finally, we analyzed sequence divergence between the genes belonging to the Krt1 complex. The results clearly indicated that genes are classified into two major groups with respect to phylogenetic relationship. Each group consists of the respective gene cluster demonstrated by genetic and physical analyses in this study, suggesting that the physical organization of the Krt1 complex reflects the evolutionary process of gene duplication of this complex.  相似文献   

14.
15.
The murine genome is known to have two keratin 6 (K6) genes, mouse K6 (MK6)a and MK6b. These genes display a complex expression pattern with constitutive expression in the epithelia of oral mucosa, hair follicles, and nail beds. We generated mice deficient for both genes through embryonic stem cell technology. The majority of MK6a/b-/- mice die of starvation within the first two weeks of life. This is due to a localized disintegration of the dorsal tongue epithelium, which results in the build up of a plaque of cell debris that severely impairs feeding. However, approximately 25% of MK6a/b-/- mice survive to adulthood. Remarkably, the surviving MK6a/b-/- mice have normal hair and nails. To our surprise, we discovered MK6 staining both in the hair follicle and the nail bed of MK6a/b-/- mice, indicating the presence of a third MK6 gene. We cloned this previously unknown murine keratin gene and found it to be highly homologous to human K6hf, which is expressed in hair follicles. We therefore termed this gene MK6 hair follicle (MK6hf). The presence of MK6hf in the MK6a/b-/- follicles and nails offers an explanation for the absence of hair and nail defects in MK6a/b-/- animals.  相似文献   

16.
CD151 is a member of the tetraspanin family that is involved in cellular processes including cell adhesion. The protein is expressed in a variety of tissues including vascular endothelium and epidermis, and has been shown to be a component of hemidesmosomes. Mutations in genes encoding other hemidesmosomal proteins give rise to a range of human disorders, characterized by fragility of the skin and/or mucous membranes. It is, therefore, plausible that inherited or acquired mutations in the gene encoding CD151 may be fundamental to the integrity and maturation of basal cell keratinocytes. To aid mutation analysis, we have characterized the intron-exon organization of the CD151 gene which comprises 8 exons spanning approximately 4.3 kb, and have developed a comprehensive PCR-based mutation detection strategy. In addition, to aid linkage analysis of CD151 in genetic disease we have fine-mapped the gene by radiation-hybrid methodology to 11p15.5, and detected a number of intragenic polymorphisms.  相似文献   

17.
18.
Our laboratories are interested in characterizing genes involved in the myriad of heritable diseases affecting the domestic dog, Canis lupus familiaris, and in development of detailed genetic and physical maps of the canine genome. Included in these efforts is examination of conservation of the genetic organization, structure, and function of gene families involved in diseases of the canine skin, skeleton, and eye. To that end, study of the highly conserved keratin gene family was undertaken. Keratins belong to the superfamily of intermediate filaments and are the major structural proteins of the epidermis, hair, and nail. The keratins are highly conserved throughout vertebrate evolution both at the DNA and amino acid sequence levels. Mutations in genes encoding epithelial keratins are known to cause various diseases in humans, and similar histopathological presentations have been reported in the dog. The keratins are divided into two groups, type I (acidic) and type II (basic). In the human, the genes encoding the acidic and basic keratins are clustered on Chrs 17 and 12, respectively. The same genetic arrangement is seen in the mouse with the acidic and basic keratin gene clusters found on Chrs 11 and 15, respectively. Reported here are the chromosomal localization of acidic and basic canine keratin genes as well as supportive sequence data. Fluorescence in situ hybridization (FISH) experiments with clones isolated from a canine genomic library suggest that the acidic keratin gene cluster resides on CFA9 and the basic keratin gene cluster is located on CFA27. Received: 25 September 1998 / Accepted: 1 December 1998  相似文献   

19.
Analysis of the EBI/GeneBank(TM) data base using non-human hair keratin-associated protein (KAP) cDNA sequences as a query resulted in the identification of a first domain of high glycine-tyrosine and high sulfur KAP genes located on human chromosome 21q22.1. This domain, present on the DNA accession numbers and, was approximately 535 kb in size and contained 17 high glycine-tyrosine and 7 high sulfur KAP genes, as well as 9 KAP pseudogenes. Based on amino acid sequence comparisons of the encoded proteins, the KAP genes could be divided into seven high glycine-tyrosine gene families (KAP6-KAP8, and KAP19-KAP22) and four high sulfur gene families (KAP11, KAP13, KAP15, and KAP23). The high glycine-tyrosine genes described here appear to represent the complete set of this type of KAP genes present in the human genome. Both systematic cDNA isolation studies from an arrayed scalp cDNA library and in situ hybridization expression studies of all of the KAP genes identified in the 21q22.1 region revealed varying degrees and regions of expression of 11 members of the high tyrosine-glycine genes and 6 members of the high sulfur KAP genes in the hair forming compartment.  相似文献   

20.
Keratin genes afford, given their large number (>50) and differential regulation, a unique opportunity to study the mechanisms underlying specification and differentiation in epithelia of higher metazoans. Moreover, the small size and regulation in cis of many keratin genes enable the use of their regulatory sequence to achieve targeted gene expression in mice. Here we show that 2 kilobases of 5' upstream region from the mouse keratin 17 gene (mK17) confers expression of green fluorescent protein (GFP) in major epithelial appendages of transgenic mice. Like that of mK17, onset of [mK17 5']-GFP reporter expression coincides with the appearance of ectoderm-derived epithelial appendages during embryonic development. In adult mice, [mK17 5']-GFP is appropriately regulated within hair, nail, glands, and oral papilla. Tracking of GFP fluorescence allows for the visualization of growth cycle-related changes in hair follicles, and the defects engendered by the hairless mutation, in live skin tissue. Deletion of an internal 48-bp interval, which encompasses a Gli-responsive element, from this promoter results in loss of GFP fluorescence in most appendages in vivo, suggesting that sonic hedgehog participates in K17 regulation. The compact mK17 gene promoter provides a novel tool for appendage-preferred gene expression and manipulation in transgenic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号