首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of lysolecithin and hexadecyltrimethylammonium bromide on the structure and stability of apoA-II from human high density lipoprotein have been evalued by circular dichroism and fluorescence measurements. There is a profound enhancement in the stability of apoA-II to guanidinium hydrochloride denaturation when it forms a phospholipid complex with lysolecithin micelles. This complex is not only resistant to guanidinium hydrochloride denaturation, but it can be formed in a 6 M solution of this denaturant. The behavior of apoA-II in the native human high density protein is much closer to that of the lysolecithin apoA-II complex than to that of the free apoA-II.  相似文献   

2.
An investigation of the denaturation of the major polypeptides from human serum high density lipoprotein by guanidine hydrochloride reveals that the lipid-free, water-soluble states are minimally stable relative to the random coil states. These findings are in direct contrast to the resistance of intrinsic membrane proteins (in the absence of ligand) to complete unfolding by the same denaturant. Consideration of the denaturation data for the apolipoproteins together with previously published data from this laboratory on ligand-induced conformational changes indicate that these polypeptides possess several similar conformational states which are readily interconvertible.  相似文献   

3.
The interaction of the apoprotein of human serum high density lipoprotein-3 (apo HDL3)11 with aqueous dispersion of natural and synthetic phospholipids (PL) was investigated at a temperature above the transitions of the PL hydrocarbon chains and also above their critical micellar concentration. This protein is known to contain two major polypeptides: apo A-I and apo A-II. The protein:PL mixtures (weight ratio, 2, 1 or 0.5) were subjected to sonic irradiation and then fractionated by either CsCl or D2O-sucrose density gradient ultracentrifugation. Usually three bands were obtained, the relative mass distribution of which depended upon the nature of the PL and the ratio of the interacting components: one band contained the PL-poor protein (d 1.28 g/ml), another, the uncombined PL (d ? 1.08 g/ml), and the third band, both protein and PL. This band, which was considered to represent the actual complex, had a hydrated density intermediate between those of either apo HDL3 or PL alone, a particle weight of 80,000 to 170,000 (i.e., less than that of intact HDL3), a morphology by electron microscopy which depended on the materials and experimental conditions employed and circular dichroic spectra  相似文献   

4.
In this study, free cholesterol (FC) efflux mediated by human HDL was investigated using fluorescence methodologies. The accessibility of FC to HDL may depend on whether it is located in regions rich in unsaturated phospholipids or in domains containing high levels of FC and sphingomyelin, known as "lipid rafts." Laurdan generalized polarization and two-photon microscopy were used to quantify FC removal from different pools in the bilayer of giant unilamellar vesicles (GUVs). GUVs made of POPC and FC were observed after incubation with reconstituted particles containing apolipoprotein A-I and POPC [78A diameter reconstituted high density lipoprotein (rHDL)]. Fluorescence correlation spectroscopy data show an increase in rHDL size during the incubation period. GUVs made of two "raft-like" mixtures [DOPC/DPPC/FC (1:1:1) and POPC/SPM/FC (6:1:1)] were used to model liquid-ordered/liquid-disordered phase coexistence. Through these experiments, we conclude that rHDL preferentially removes cholesterol from the more fluid phases. These data, and their extrapolation to in vivo systems, show the significant role that phase separation plays in the regulation of cholesterol homeostasis.  相似文献   

5.
Apo-Gln-I, the major polypeptide component of human serum high density lipoprotein, has four noninteracting hydrophobic sites which associate with alkanes, anionic detergents, and cationic detergents. Hexane and octane bind to these sites with association constants of 6.8 times 10-2 and 1.8 times 10-4 liters/mol, respectively, and compete with the anionic detergent, sodium dodecyl sulfate (C12OSO3-minus), at low detergent ligand binding ratios (i.e. smaller than or equal to 1.0 mol of C12OSO3-minus per mol of protein). At higher detergent binding ratios (larger than 2 mol of C12OSO3-minus per mol of protein) the polypeptide cooperatively binds alkanes and a conformational change is induced.  相似文献   

6.
7.
8.
Human high density lipoprotein (HDL) and its subfractions (HDL2 and HDL3) were separated by ultracentrifugation and the molar ratio of the two major polypeptide chains apo-Gln-I and apo-Gln-II was determined by fluorescence tagging of sodium dodecyl sulfate-denatured proteins combined with polyacrylamide disc gel electrophoresis. Using purified apo-Gln-I and apo-Gln-II standards, it was found that holo HDL, holo HDL2, and holo HDL3 from all plasma samples contained a molar ratio of apo-Gln-I to the disulfide-bound dimer of apo-Gln-II of 2:1, that is a 1:1 ratio in terms of each species of polypeptide chain. The method described is useful for making repeated and rapid measurements on microgram quantities of intact lipoproteins.  相似文献   

9.
10.
The interaction of sonicated, small vesicles of egg phosphatidylcholine and cholesterol (2:1, mol/mol) with bovine high density serum lipoproteins was examined in terms of lipid transfer between both types of particles and the resulting changes in lipoprotein structure. Saturation of high density lipoprotein preparations with vesicle lipids gave final lipoprotein particles with essentially unchanged protein content and composition, unchanged cholesterylester and nonpolar lipid content, but with markedly increased phospholipid content (59% increas by weight) and moderately increased cholesterol content (20% increase by weight). The lipoproteins enriched in lipid were relatively uniform, spherical particles, 110 +/- 3.6 A in diameter (6 A larger than the original lipoproteins); they had a markedly decreased intrinsic protein fluorescence, a red-shifted fluorescence wavelength maximum, and more fluid lipid domains. These results indicate that the direct addition of excess lipids from membranes or other lipoproteins is a possible mechanism for lipid transfer to high density lipoproteins. Also they suggest a structural flexibility of high density lipoproteins that allows the addition of significant amounts of surface components.  相似文献   

11.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27 degrees C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1, or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 X 55 A. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

12.
13.
14.
15.
16.
Over the past few years, new experimental approaches have reinforced the awareness among investigators that the heterogeneity of HDL particles indicates significant differences in production and catabolism of HDL particles. Recent kinetic studies have suggested that small HDL, containing two apolipoprotein A-I molecules per particle, are converted in a unidirectional manner to medium HDL or large HDL, containing three or four apolipoprotein A-I molecules per particle, respectively. Conversion appears to occur in close physical proximity with cells and not while HDL particles circulate in plasma. The medium and large HDL are terminal particles in HDL metabolism with large HDL, and perhaps medium HDL, being catabolized primarily by the liver. These novel kinetic studies of HDL subfraction metabolism are compelling in-vivo data that are consistent with the proposed role of HDL in reverse cholesterol transport.  相似文献   

17.
18.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27°C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1 or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 × 55 A?. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

19.
Incubation of 125I-labeled very low density lipoprotein (VLDL) with lipoprotein lipase-rich (postheparin) plasma obtained from intact or supradiaphragmatic rats resulted in the transfer of more than 80% of apoprotein C from VLDL to high density lipoprotein (HDL), whereas apoprotein B was associated with lipoprotein of density less than 1.019 g/ml (intermediate lipoprotein). The transfer of 125I-labeled apoprotein C from VLDL to HDL increased with time and decreased in proportion to the amount of VLDL in the incubation system. A relationship was established between the content of triglycerides and apoprotein C in VLDL, whereas the amount of apoprotein C in VLDL was independent of that of other apoproteins, especially apoprotein B. The injection of heparin to rats preinjected with 125I-labeled VLDL caused apoprotein interconversions similar to those observed in vitro. The intermediate lipoprotein was relatively rich in apoprotein B, apoprotein VS-2, cholesterol, and phospholipids and poor in triglycerides and apoprotein C. The mean diameter of intermediate lipoprotein was 269 A (compared with 427 A, the mean Sf rate was 30.5 (compared with 115), and the mean weight was 7.0 X 10(6) daltons (compared with 23.1 X 10(6)). From these data it was possible to calculate the mass of lipids and apoproteins in single lipoprotein particles. The content of apoprotein B in both particles was virtually identical, 0.7 X 10(6) daltons. The relative amount of all other constituents in intermediate lipoprotein was lower than in VLDL: triglycerides, 22%; free cholesterol, 37%; esterified cholesterol, 68%; phospholipids, 41%; apoprotein C, 7%, and VS-2 apoprotein, 60%. The data indicate that (a) one and only one intermediate lipoprotein is formed from each VLDL particle, and (b) during the formation of the intermediate lipoprotein all lipid and apoprotein components other than apoprotein B leave the density range of VLDL to a varying degree. Whether these same changes occur during the clearance of VLDL in vivo is yet to be established.  相似文献   

20.
HDLc, a cholesterol-rich lipoprotein that accumulates in the plasma of cholesterol-fed swine, was shown to resemble functionally human and swine low density lipoprotein in its ability to bind to the low density lipoprotein receptor in monolayers of cultured human fibroblasts. This binding occurred even though HDLc lacked detectable apoprotein B, which is the major protein of low density lipoprotein. After it was bound to the low density lipoprotein receptor, HDLc, like human and swine low density lipoprotein, delivered its cholesterol to the cells, and this, in turn, caused a suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, an activation of the cholesterol-esterifying system, and a net accumulation of free and esterified cholesterol within the cells. Swine HDLc, like human high density lipoprotein, did not bind to the low density lipoprotein receptor nor did it elicit any of the subsequent metabolic events. HDLc, like human low density lipoprotein, was incapable of producing a metabolic effect in fibroblasts derived from a subject with the homozygous form of familial hypercholesterolemia, which lack low density lipoprotein receptors. These results indicate that two lipoproteins that have been associated with athersclerosis--low density lipoprotein in humans and HDLc in cholesterol-fed swine--both can cause the accumulation of cholesterol and cholesteryl esters within cells through an interaction with the low density lipoprotein receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号