首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intact erythrocytes were spin-labeled with various classes of phospholipid label. The ESR spectrum for phosphatidylcholine spin label was distinctly different from those for phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidic acid spin labels. The overall splitting for the former (52.5 G) was markedly larger than those for the others (approx. 47 G), suggesting a more rigid phosphatidylcholine bilayer phase and more fluid phosphatidylethanolamine and phosphatidylserine phases in the erythrocyte membrane. Evidence for asymmetric distribution of phospholipids in the membrane was obtained. Spin-labeled phosphatidylcholine incorporated into erythrocytes was reduced immediately by cystein and Fe3+, while the reduction of spin-labeled phosphatidylserine was very slow. The present results therefore suggest asymmetric fluidity in erythrocyte membrane; a more rigid outer layer and a more fluid inner layer. The heterogeneity in the lipid structure was also manifested in the temperature dependence of the fluidity. The overall splitting for phosphatidylcholine spin label showed two inflection points at 18 and 33 degrees C, while that for phosphatidylserine spin label had only one transition at 30 degrees C. When the spin-labeled erythrocytes were hemolyzed, the marked difference in the ESR spectra disappeared, indicating homogenization of the heterogenous fluidity. Mg2+ or Mg2+ + ATP prevented the hemolysis-induced spectral changed. Ca2+ did not prevent the homogenization and acted antagonistically to Mg2+. The heterogeneity preservation by Mg2+ was nullified by trypsin, pronase or N-ethylmaleimide added inside the cell. Some inner proteins may therefore be involved in maintaining the heterogeneous structure. The protecting action of Mg2+ was dependent on hemolysis temperature, starting to decrease at 18 degrees C and vanishing at 40 degrees C. The present study suggests that the heterogeneity in the fluidity of intact erythrocyte membranes arises from interactions between lipids and proteins in the membrane and also from interactions between the membrane constituents and the inner proteins. Concentration of cholesterol in the outer layer may also partly contribute to the heterogeneity.  相似文献   

2.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

3.
Choline esters of spin-labeled fatty acids (long-chain acylcholines) were used to probe the hydrophobic environment of the acetylcholine receptor protein in membrane fragments from Torpedo marmorata. These spin-labels competitively inhibit the binding of [3H]acetylcholine to the receptor site. Their inhibition constants (KI) were close to 200 nM. At the high membrane concentration required for electron spin resonance (ESR) experiments, the apparent inhibition constants (KIapp) differed from KI determined by using dilute membrane concentration. This is due to the amphiphilic character of long-chain acylcholine. For most spin-labels used, only difference ESR spectroscopy provided reliable spectra corresponding to receptor-bound spin-labeled acylcholines. Acetylcholine receptor agonists and antagonists displaced the acylcholine from the receptor sites, whereas choline had only a weak effect. This produced a modification in the ESR spectra of the bound acylcholines and provided evidence that the acylcholines bound to the receptor sites in a specific manner. The interpretation of the spectra of receptor-bound spin-labels favored a strong barrier to the motion of the probe when attached to the middle of the acyl chain. However, when the probe was close to the methyl terminal of a stearoylcholine molecule a much greater fluidity was found. Short-range spin-spin interactions were created between spin-labels bound to the receptor site and spin-labels in a fluid phase. This indicates that lipids next to the receptor protein are not completely immobilized in spite of the semicrystalline organization of the proteins in the postsynaptic region.  相似文献   

4.
To determine the fluidity of the membrane lipid phase, chicken erythrocytes were labeled with a stearic acid derivative spin label. When chicken erythrocytes were treated with concanavalin A (Con A), ESR spectra showed a change in the peaks of the labels in membrane lipids, indicating an increase of membrane fluidity. The degree of the increase in fluidity of the membrane lipid phase depended on the valency of the lectin used. Tetravalent Con A induced an increase of membrane fluidity at a concentration as low as 30 micrograms/ml, while a monovalent derivative of Con A did not affect membrane fluidity. This increase in membrane fluidity was observed within 10 min after the addition of Con A. If bound Con A was removed with methyl alpha-D-mannoside later than 60 min after its addition, a complete return of the fluidity to the normal level could not be observed. However, no change was found in the composition of phospholipids or in the fatty acid compositions of phosphatidylcholine and phosphatidylethanolamine of chicken erythrocytes after the addition of Con A, indicating that this increase in membrane fluidity is not caused by a change of lipid composition. The clustering of membrane receptors of chicken erythrocytes for Con A was demonstrated when the two-dimensional distribution of ferritin-conjugated Con A on the membranes was assayed by transmission electron microscopy. Furthermore, it was shown that major receptors for Con A of chicken erythrocytes were transmembrane glycoproteins having apparent molecular weights of 100K, 45, and 33K.  相似文献   

5.
Conventional ESR spectra of 16-doxyl-stearic acid bound to bovine and human serum albumin were recorded at different temperatures in order to investigate the status of spin-labeled fatty acid in the interior of the protein globule. A computer spectrum simulation of measured spectra, performed by non-linear least-squares fits, clearly showed two components corresponding to strongly and weakly immobilized fatty acid molecules. The two-component model was verified on spectra measured at different pH. Thermodynamic parameters of the spin probe exchange between two spin probe states were analyzed. It was concluded that at physiological conditions, fatty acid molecules permanently migrate in the globule interior between the specific binding sites and a space among albumin domains.  相似文献   

6.
Macrophage membrane fluidity was investigated with respect to cellular phagocytic activity through the use of fatty acid spin labels. Spin-labeled fatty acid derivatives were incorporated into intact mouse peritoneal macrophages by exchange from bovine serum albumin. The electron spin resonance (ESR) spectra of the spin-labeled fatty acids in the macrophages showed a pronounced temperature dependence and a decrease in the hyperfine splittings (2 T11) of the spectra as the nitroxide radical was moved away from the polar head group of the fatty acid derivatives. Spin-labeled macrophages underwent a time- and temperature-dependent decay, which was inhibited by preincubating the cells with mercuric chloride, heating at 56 degrees C, or by fixing them with 0.25% glutaraldehyde. No correlation between the phagocytic activity of macrophages and membrane freedom of motion could be demonstrated. Treatment of macrophages with anti-macrophage serum or extended in vitro cultivation inhibited cellular phagocytic activity but exerted no effect on the motional freedom of the macrophage membrane. Enrichment of the fatty acid composition of the macrophage membrane with cis- or trans-unsaturated fatty acids had striking effects on cellular phagocytic activity, while no significant changes could be detected in the freedom of motion of incorporated fatty acid spin labels at the degree of specific enrichment achieved here. Thus no correlation between cellular phagocytic activity and lipid motion could be detected.  相似文献   

7.
The structures of purified rat liver and heart plasma membranes were studied with the 5-nitroxide stearic acid spin probe, I(12,3). ESR spectra were recorded with a 50 gauss field sweep, and also with a new technique which "expands" the spectrum by (1) recording pairs of adjoining peaks with a smaller field sweep and (2) superposing the common peaks. The hyperfine splittings measured from the "expanded" spectra were significantly more precise than those obtained from the "unexpanded" spectra. Both procedures were used to study the effects of various I(12,3) probe concentrations on the spectra of liver and heart membranes, as well as the effects of temperature and CaCl2 additions on the spectra of liver membranes, and revealed the following: The polarity-corrected order parameters of liver (31 degrees) and heart (22 degrees) membranes were found to be independent of the probe concentration, if experimentally-determined low I(12,3)/lipid ratios were employed. The absence of obvious radical-interaction broadening in the unexpanded spectra indicated that "intrinsic" membrane properties may be measured at these low probe/lipid ratios. Here, "intrinsic" properties are defined as those which are measured when probe-probe interactions are negligible, and do not refer to membrane behavior in the absence of a perturbing spin label. At higher I(12,3)/lipid ratios, the order parameters of liver and heart membranes were found to substantially decrease with increasing probe concentration. The increase in the "apparent" fluidity of both membrane systems is attributed to enhanced radical interactions; however, an examination of these spectra (without reference to "low" probe concentration spectra) might incorrectly suggest that radical interactions were absent. For the membrane concentrations employed in these studies, the presence of "liquid-lines" (or "fluid components") in the unexpanded ESR spectra was a convenient marker of high probe concentrations. A thermotropic phase separation was observed in liver membranes between 19 degrees and 28 degrees. Addition of CaCl2 to liver plasma membrane [labelled with "low" I(12,3) concentrations] increased the rigidity of the membrane at 31 degrees and 37 degrees, without inducing a segregation of the probe in the bilayer. Previously reported data are discussed in relation to these results, and suggested minimal criteria for performing membrane spin label studies are included.  相似文献   

8.
We have earlier shown through electron spin resonance (ESR) studies of leukocytes that membranes of cells from both Chediak-Higashi syndrome (CHS) mice and humans have abnormally high fluidity. We have extended our studied to erythrocytes. Erythrocytes were labeled with the nitroxide-substituted analogue of stearic acid, 2-(3-carboxypropyl)-4,4- dimethyl-2-tridecyl-3-oxazolidinyloxyl, and ESR spectra were obtained. Order parameter, S, at 23 degrees C, was 0.661 and 0.653 for erythrocytes of normal and CHS mice (P less than 0.001). S was 0.684 for normal human erythrocytes and 0.675 (P less than 0.001) for CHS erythrocytes at 25 degrees C. Because S varies inversely to fluidity, these results indicate that CHS erythrocytes tend to have higher fluidity than normal. In vitro treatment of both mice and human CHS erythrocytes with 10 mM ascorbate returned their membrane fluidity to normal. We prepared erythrocyte ghosts and extracted them with CHCl3:CH3OH (2:1). Gas-liquid chromatography analysis showed a greater number of unsaturated fatty acids for CHS. The average number of double bonds detected in fatty acids for mice on a standard diet was 1.77 for normal and 2.02 for CHS (P less than 0.04); comparison of human erythrocytes from one normal control and one CHS patient showed a similar trend. Our results suggest that an increased proportion of unsaturated fatty acids may contribute to increased fluidity of CHS erythrocytes. Our observation that both leukocytes and erythrocytes of CHS have abnormal fluidity indicates that CHS pathophysiology may relate to a general membrane disorder.  相似文献   

9.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

10.
用马来酰亚胺自旋标记研究库存血红细胞膜蛋白质构象   总被引:1,自引:1,他引:1  
用两种马来酰亚胺自旋标记物—马来酰亚胺Ⅰ和马来酰亚胺Ⅴ研究了红细胞膜蛋白质构象及巯基结合位点性质在ACD-B方库存血保存期间的动态变化。结果发现,在35天的血液保存期间,马来酰亚胺Ⅰ所标记红细胞膜的S/w值很快下降到一低水平,而马来酰亚胺Ⅴ所标记红细胞膜的旋转相关时间则呈现迅速下降后缓慢升高的双相性变化。作者结合膜蛋白构象及其周围微观环境进行了讨论。  相似文献   

11.
用马来酰亚胺自旋标记研究库存血红细胞膜蛋白质构象   总被引:2,自引:0,他引:2  
用两种马来酰亚胺自旋标记物—马来酰亚胺Ⅰ和马来酰亚胺Ⅴ研究了红细胞膜蛋白质构象及巯基结合位点性质在ACD-B方库存血保存期间的动态变化。结果发现,在35天的血液保存期间,马来酰亚胺Ⅰ所标记红细胞膜的S/w值很快下降到一低水平,而马来酰亚胺Ⅴ所标记红细胞膜的旋转相关时间则呈现迅速下降后缓慢升高的双相性变化。作者结合膜蛋白构象及其周围微观环境进行了讨论。  相似文献   

12.
The microwave saturation properties of various spin-labeled lipids in reconstituted complexes of the myelin proteolipid protein with dimyristoyl phosphatidylcholine have been studied both by conventional and saturation transfer electron spin resonance (ESR) spectroscopy. In the fluid phase, the conventional ESR spectra consist of a fluid and a motionally restricted (i.e., protein-associated) component, whose relative proportions can be determined by spectral subtractions and depend on the selectivity of the particular spin-labeled lipid for the protein. At 4 degrees C when the bulk lipid is in the gel phase, the integrated intensity of the saturation transfer ESR spectra displays a linear dependence on the fraction of motionally restricted lipid that is deduced from the conventional ESR spectra in the fluid phase, indicating the presence of distinct populations of free and protein-interacting lipid with no exchange between them on the saturation transfer ESR time scale in the gel phase. At 30 degrees C when the bulk lipid is in the fluid phase, the saturation transfer integral displays a nonlinear dependence on the fraction of motionally restricted lipid, consistent with exchange between the two lipid populations on the saturation transfer ESR time scale in the fluid phase. For lipid spin labels with different selectivities for the protein in complexes of fixed lipid/protein ratio, the data in the fluid phase are consistent with a constant (diffusion-controlled) on-rate for exchange at the lipid-protein interface. Values ranging between 1 and 9 x 10(6) s-1 are estimated for the intrinsic off-rates for exchange of spin-labeled stearic acid and phosphatidylcholine, respectively, at 30 degrees C. Conventional continuous wave saturation experiments lead to similar conclusions regarding the lipid exchange rates in the fluid and gel phases of the lipid/protein recombinants. The ESR saturation studies therefore demonstrate exchange on the time scale of the nitroxide spin-lattice relaxation at the lipid-protein interface of myelin proteolipid/dimyristoyl phosphatidylcholine complexes in the fluid phase but not in the gel phase.  相似文献   

13.
Intact erythrocytes were spin-labeled with various classes of phospholipid label. The ESR spectrum for phosphatidylcholine spin label was distinctly different from those for phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidic acid spin labels. The overall splitting for the former (52.5 G) was markedly larger than those for the others (approx. 47 G), suggesting a more rigid phosphatidylcholine bilayer phase and more fluid phosphatidylethanolamine and phosphatidylserine phases in the erythrocyte membrane. Evidence for asymmetric distribution of phospholipids in the membrane was obtained. Spin-labeled phosphatidylcholine incorporated into erythrocytes was reduced immediately by cystein and Fe3+, while the reduction of spin-labeled phosphatidylserine was very slow. The present results therefore suggest asymmetric fluidity in erythrocyte membrane; a more rigid outer layer and a more fluid inner layer. The heterogeneity in the lipid structure was also manifested in the temperature dependence of the fluidity. The overall splitting for phosphatidylcholine spin label showed two inflection points at 18 and 33 °C, while that for phosphatidylserine spin label had only one transition at 30 °C.When the spin-labeled erythrocytes were hemolyzed, the marked difference in the ESR spectra disappeared, indicating homogenization of the heterogeneous fluidity. Mg2+ or Mg2++ATP prevented the hemolysis-induced spectral changes. Ca2+ did not prevent the homogenization and acted antagonistically to Mg2+. The heterogeneity preservation by Mg2+ was nullified by trypsin, pronase or N-ethylmaleimide added inside the cell. Some inner proteins may therefore be involved in maintaining the heterogeneous structure. The protecting action of Mg2+ was dependent on hemolysis temperature, starting to decrease at 18 °C and vanishing at 40 °C. The present study suggests that the heterogeneity in the fluidity of intact erythrocyte membranes arises from interactions between lipids and proteins in the membrane and also from interactions between the membrane constituents and the inner proteins. Concentration of cholesterol in the outer layer may also partly contribute to the heterogeneity.  相似文献   

14.
W Lohmann  W Schmehl  D Holz  M Everz 《Blut》1986,53(6):437-441
Electron spin resonance (ESR) spectra of lyophilized erythrocytes obtained from patients with acute myeloid leukemia (AML) show, in comparison to controls, a characteristic change especially in the low-field region of the spectrum concomitant with a reduction of the spin concentration. This effect can be simulated by addition of SH-containing substances (e.g. reduced glutathione or cysteine) to healthy erythrocytes. S-S containing compounds exhibit no effect. Since SH-containing substances can hardly permeate plasma membranes, the membrane surface seems to be defective in the case of "AML" erythrocytes. Furthermore, it can be concluded that the concentration of SH-containing substances, such as cysteine, is increased in the plasma of AML-patients, which could be confirmed by HPLC-measurements. In the case of a successful treatment of the patients with alexan, daunoblastin, and thioguanine the spin concentration increased again and the resulting ESR spectrum is very similar to the control spectrum. It should be pointed out, that the ascorbic acid concentration is very low in both plasma and erythrocytes of AML patients.  相似文献   

15.
The effects of pH on the membrane fluidity of intact human erythrocytes, ghosts, and their lipid vesicles were studied by spin label techniques in the range of pH 3.0 to 9.1. Two fatty acid spin labels, 5-nitroxide stearic acid (5NS) and 12-nitroxide stearic acid (12NS), and a maleimide spin label were used for the labeling of the membrane lipids and proteins, respectively. The outer hyperfine splitting (T parallel) was measured as a parameter of membrane fluidity. In the case of 5NS, the T parallel values for intact erythrocytes and ghosts remained almost constant over the entire pH range at 22 degrees C but those for their lipid vesicles changed slightly, indicating the vertical displacement of the labels in lipid bilayers. On the other hand, the ESR spectra of 12NS incorporated into intact erythrocytes and ghosts, as compared with their lipid vesicles, showed marked pH dependence. By means of spin labeling of membrane proteins, the conformational changes of the proteins were observed in the pH range mentioned above. These results suggest a possible association between the strong pH dependence of the T parallel values and the conformation changes of membrane proteins. The pH dependence of the membrane fluidity was also investigated in cholesterol-enriched and -depleted erythrocytes. The effects of cholesterol demonstrated that the membrane fluidity was significantly mediated by cholesterol at low pH, but not at high pH.  相似文献   

16.
Membrane fluidity of human erythrocytes treated with H2O2 (1--20 mM) was studied using three kinds of fatty acid spin labels. A strongly immobilized signal appeared on exposure of erythrocytes to H2O2 but was not observed in either H2O2- or Fenton's reagent-treated ghosts or lipid vesicles prepared from H2O2-treated erythrocytes, indicating that the appearance of this signal necessitates the reaction of hemoglobin with H2O2 and is not due to lipid peroxidation. The ESR spectrum of maleimide-prelabeled erythrocytes showed an isotropic signal and the rotational correlation time (tau c) increased as the concentration of H2O2 was increased. Furthermore, maleimide labeling of H2O2-pretreated erythrocytes showed a strongly immobilized component, in addition to a weakly immobilized component. From the relative ratio of the signal intensity of hemoglobin and membrane proteins, it was found that label molecules bound predominantly to hemoglobin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of H2O2-treated erythrocytes demonstrated globin aggregation. Therefore, the changes in the ESR signal observed on H2O2 treatment may be due to some change in hemoglobin, such as globin aggregation or its binding to the membranes. The ESR spectrum of H2O2-treated erythrocytes at -196 degrees C is characterized by signals of nonheme ferric iron type (g equal to 4.3), low spin ferric iron, and free radical type at g equal to 2.00. At higher H2O2 concentrations, the ESR lines due to low spin ferric iron became broad and their peak heights decreased, compared with that at g equal to 2.00 or 4.3. These results indicate that oxidative stress such as decrease of membrane fluidity, lipid peroxidation, and globin aggregation in H2O2-treated erythrocytes is dependent on the reaction of hemoglobin with H2O2.  相似文献   

17.
A long chain spin labeled fatty acid and the corresponding ester have been introduced into receptor rich membranes from Torpedo Marmorata. Superimposed to a mobile component, typical of the lipid phase, a strongly immobilized component is seen on the ESR spectra, both at low temperature (?4°C) and at room temperature. An estimation of the amount of immobilized signal as a function of the concentration of spin label in the membrane shows that a saturation is reached which corresponds to approximately twice the concentration of receptor protein. In the same membranes, a spin labeled phosphatidylcholine was introduced by the release of the phosphatidylcholine analog from purified phosphatidylcholine exchange protein, preloaded with this spin label. No immobilized component is seen in this latter case even at low temperatures. Therefore the immobilized component seen with the fatty acid cannot be considered as reporting on an immobilized boundary layer of phospholipids surrounding the proteins. We attribute the immobilized signal seen with fatty acids and esters to a particular interaction of amphiphilic molecules with the cholinergic receptor protein. Very likely this effect can be associated with the local anaesthetic effect detected previously with this fatty acid.  相似文献   

18.
ESR spectra of egg lecithin dispersions labelled with 5-nitroxide stearic acid are recorded with a 50 G field sweep, and also with a new technique which "expands" the spectrum by (1) recording pairs of adjoining peaks with a smaller field sweep and (2) superposing the common peaks. The expansion technique improves the precision of the order parameters determined from the hyperfine splitting measurements, and may prove useful in future spin label membrane studies. Approximate order parameters are derived to describe the fluidity of fatty acid spin-labelled membranes in those cases where either the inner or outer hyperfine extrema are not well defined. The ability of these expressions to measure the fluidity of labelled egg lecithin disperions for the temperature range 14-42 degrees C is examined.  相似文献   

19.
ESR spectra and scanning electron micrographs of human erythrocytes spin labeled with the conventional stearic acid nitroxide substituted at the 5-position have been obtained over a range of label-to-lipid ratios. While morphological changes as previously reported (Bieri, V. G., Wallach, D. F. H. and Lin, P. S. (1974) Proc. Natl. Acad. Sci. U.S. 71, 4797-4801) are reproduced, it is shown that at label-to-lipid ratios of 1:10 or less the basic ESR spectrum is not significantly affected. At low label concentrations the spin labeling technique is a viable one and can be used to investigate membrane properties.  相似文献   

20.
The miscibility and phase behavior of hydrated binary mixtures of two N-acylethanolamines (NAEs), N-myristoylethanolamine (NMEA), and N-palmitoylethanolamine (NPEA), with the corresponding diacyl phosphatidylethanolamines (PEs), dimyristoylphosphatidylethanolamine (DMPE), and dipalmitoylphosphatidylethanolamine (DPPE), respectively, have been investigated by differential scanning calorimetry (DSC), spin-label electron spin resonance (ESR), and (31)P-NMR spectroscopy. Temperature-composition phase diagrams for both NMEA/DMPE and NPEA/DPPE binary systems were established from high sensitivity DSC. The structures of the phases involved were determined by (31)P-NMR spectroscopy. For both systems, complete miscibility in the fluid and gel phases is indicated by DSC and ESR, up to 35 mol % of NMEA in DMPE and 40 mol % of NPEA in DPPE. At higher contents of the NAEs, extensive solid-fluid phase separation and solid-solid immiscibility occur depending on the temperature. Characterization of the structures of the mixtures formed with (31)P-NMR spectroscopy shows that up to 75 mol % of NAE, both DMPE and DPPE form lamellar structures in the gel phase as well as up to at least 65 degrees C in the fluid phase. ESR spectra of phosphatidylcholine spin labeled at the C-5 position in the sn-2 acyl chain present at a probe concentration of 1 mol % exhibit strong spin-spin broadening in the low-temperature region for both systems, suggesting that the acyl chains pack very tightly and exclude the spin label. However, spectra recorded in the fluid phase do not exhibit any spin-spin broadening and indicate complete miscibility of the two components. The miscibility of NAE and diacyl PE of matched chainlengths is significantly less than that found earlier for NPEA and dipalmitoylphosphatidylcholine, an observation that is consistent with the notion that the NAEs are most likely stored as their precursor lipids (N-acyl PEs) and are generated only when the system is subjected to membrane stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号