首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new fluorescence-based biosensor is presented. The biosensing scheme is based on the fact that a fluorophore in close proximity to a metal film (<100 A) experiences strong quenching of fluorescence and a dramatic reduction in the lifetime of the excited state. By immobilizing the analyte of interest (or a structural analog of the analyte) to a metal surface and exposing it to a labeled receptor (e.g. antibody), the fluorescence of the labeled receptor becomes quenched upon binding because of the close proximity to the metal. Upon exposure to free analyte, the labeled receptor dissociates from the surface and diffuses into the bulk of the solution. This increases its separation from the metal and an increase of fluorescence intensity and/or lifetime of the excited state is observed that indicates the presence of the soluble analyte. By enclosing this system within a small volume with a semipermeable membrane, a reversible device is obtained. We demonstrate this scheme using a biotinylated self-assembled monolayer (SAM) on gold as our surface immobilized analyte analog, fluorescently labeled anti-biotin as a receptor, and a solution of biotin in PBS as a model analyte. This scheme could easily be extended to transduce a wide variety of protein-ligand interactions and other biorecognition phenomena (e.g. DNA hybridization) that result in changes in the architecture of surface immobilized biomolecules such that a change in the separation distance between fluorophores and the metal film is obtained.  相似文献   

2.
The lifetimes of fluorescent components of matrix NADH in isolated porcine heart mitochondria were investigated using time-resolved fluorescence spectroscopy. Three distinct lifetimes of fluorescence were resolved: 0.4 (63%), 1.8 (30%), and 5.7 (7%) ns (% total NADH). The 0.4 ns lifetime and the emission wavelength of the short component were consistent with free NADH. In addition to their longer lifetimes, the remaining pools also had a blue-shifted emission spectrum consistent with immobilized NADH. On the basis of emission frequency and lifetime data, the immobilized pools contributed >80% of NADH fluorescence. The steady-state kinetics of NADH entering the immobilized pools was measured in intact mitochondria and in isolated mitochondrial membranes. The apparent binding constants (K(D)s) for NADH in intact mitochondria, 2.8 mM (1.9 ns pool) and >3 mM (5.7 ns pool), were on the order of the estimated matrix [NADH] (approximately 3.5 mM). The affinities and fluorescence lifetimes resulted in an essentially linear relationship between matrix [NADH] and NADH fluorescence intensity. Mitochondrial membranes had shorter emission lifetimes in the immobilized poo1s [1 ns (34%) and 4.1 ns (8%)] with much higher apparent K(D)s of 100 microM and 20 microM, respectively. The source of the stronger NADH binding affinity in membranes is unknown but could be related to high order structure or other cofactors that are diluted out in the membrane preparation. In both preparations, the rate of NADH oxidation was proportional to the amount of NADH in the long lifetime pools, suggesting that a significant fraction of the bound NADH might be associated with oxidative phosphorylation, potentially in complex 1.  相似文献   

3.
A method is described for estimating the fractional contribution of light scattered from the excitation lamp to the normalized raw fluorescence lifetime curve. The method depends on the ratio of the slope of the normalized light scatter spectrum to the slope of the normalized raw fluorescence spectrum in the vicinity of the intersection of the two spectra. The correction for scattered light is made prior to deconvolution, and hence, has the advantage of being independent of the method selected to calculate the true fluorescence life-time spectrum. It is simple and does not require a computer. Tested against curves synthesized from known additions of scattered light to fluorescence spectra exhibiting mono-, bi-, or triexponential decay, it yielded small absolute errors.  相似文献   

4.
Spatially-resolved detection of antibody-antigen reactions at the solid/liquid interface was investigated by total internal reflection excited fluorescence from large area flat surfaces. Anti-HSA immunoglobulin G (IgG) antibody was immobilized at four spatially distinct spots. Binding of fluorescein-labeled human serum albumin (HSA) from the solution to immobilized antibody was detected by a cooled charge-coupled device (CCD) as a charge in the fluorescence intensity. A two-dimensional representation of the fluorescence was obtained during the binding reaction time of 25 mins. The contributions from bound and free antigen to the total signal were evaluated. The influence of the scattered excitation light and the normalization of fluorescence signal with respect to the two-dimensional incident light intensity distribution are discussed.  相似文献   

5.
Otto H  Hoersch D  Meyer TE  Cusanovich MA  Heyn MP 《Biochemistry》2005,44(51):16804-16816
We show from time-resolved fluorescence intensity and depolarization experiments that the fluorescence of the unique tryptophan W119 of PYP is quenched by energy transfer to the 4-hydroxycinnamoyl chromophore. Whereas the intensity decay has a time constant of 0.18 ns in P, the decay in the absence of the cofactor (apo-PYP) has a single exponential lifetime of 4.8 ns. This difference in lifetime with and without acceptor can be explained quantitatively on the basis of energy transfer and the high-resolution X-ray structure of P, which allows an accurate calculation of the kappa2 factor. Fluorescence depolarization experiments with donor and acceptor indicate that both are immobilized so that kappa2 is constant on the fluorescence time scale. Using background illumination from an LED emitting at 470 nm, we measured the time-resolved fluorescence in a photostationary mixture of P and the intermediates I2 and I2'. The composition of the photostationary mixture depends on pH and changes from mainly I2 at low pH to predominantly I2' at high pH. The I2/I2' equilibrium is pH-dependent with a pKa of approximately 6.3. In I2 the lifetime increases to approximately 0.82 ns. This is not due to a change in distance or to the increase in spectral overlap but is primarily a consequence of a large decrease in kappa2. Kappa2 was calculated from the available X-ray structures and decreases from approximately 2.7 in P to 0.27 in I2. This change in kappa2 is caused by the isomerization of the acceptor, which leads to a reorientation of its transition dipole moment. We have here a rare case of the kappa2 factor dominating the change in energy transfer. The fluorescence decay in the light is pH-dependent. From an SVD analysis of the light/dark difference intensity decay at a number of pH values, we identify three species with associated lifetimes: P (0.18 ns), I2 (0.82 ns), and X (0.04 ns). On the basis of the pH dependence of the amplitudes associated with I2 and X, with a pKa of approximately 6.3, we assign the third species to the signaling state I2'. The absorption spectra of the 0.82 and 0.04 ns species were calculated from the pH dependence of their fluorescence amplitudes and of the photostationary light/dark difference absorption spectra. The lambda(max) values of these spectra (372 and 352 nm) identify the 0.82 and 0.04 ns components with I2 and I2', respectively, and validate the fluorescence data analysis. The mutant E46Q allows a further test of the energy transfer explanation, since lowering the pH in the dark leads to a bleached state with an increased spectral overlap but without the isomerization-induced decrease in kappa2. The measured lifetime of 0.04 ns is in excellent agreement with predictions based on energy transfer and the X-ray structure.  相似文献   

6.
A fluorescence biosensor for organophosphorus pesticides was developed. A pH indicator, CdTe quantum dots, were used as an optical transducer of the inhibition of enzyme by analyte. Through the intervening agency of chitosan, the recognition elements (acetylcholinesterase and CdTe) were immobilized onto the surface of quartz by electrostatic attraction to form a self‐assembled multilayer film. In the absence of pesticide, acetylcholine was biocatalytically hydrolysed to yield acetic acid and choline. The released acid resulted in pH decrease, which was sensed by the immobilized pH indicator (CdTe). In the presence of pesticide, the action of acetylcholine was reduced; the fluorescence intensity of the film changed and was related to the concentration of pesticide. This multilayer film could be used as the biosensor for monocrotophos, with a detection limit of 3.20 × 10?8 mol/L; the sensitivity was 100 times higher than that of CdTe in aqueous solution. The sensor was easily regenerated, and had good stability and selectivity for organophosphorus pesticides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The feasibility of buffer exchange in biosensor chip mass spectrometry, along with the construction of base sensor chips and use of alternative chip chemistries, is demonstrated in this work. Beta-2-microglobulin (beta2m) was used as an analyte and captured in the first flow cell (FC1) on the sensor chip surface by an immobilized anti-beta2m antibody. Low pH buffer was then used to elute the captured analyte from the flow cell and route it to a second flow cell (FC2) downstream that served as a cation exchanger that retains the analyte. Following additional washes in FC1, the analyte present in FC2 was either eluted with a higher pH buffer (to demonstrate the possibility of elution into a downstream trypsin flow cell), or it was subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis to verify its presence in FC2. In a separate experiment, a gold-sputtered glass slide (base chip) was activated through a formation of 11-mercaptoundecanoic acid self-assembled monolayer and via reaction with 1,1"-carbonyldiimidazole. The activated chip was placed manually into the biosensor and two surfaces (flow cells) were derivatized with antibodies to beta2m and cystatin C (cysC). To evaluate the chip performance, diluted human urine aliquot was injected over the flow cells. Following the surface plasmon resonance analysis, the chip was MALDI-TOF MS analyzed, yielding signals from beta2m and cysC from their respective flow cells. Artifacts arising from the surface chemistries were not observed in the analysis.  相似文献   

8.
New screening techniques for improved enzyme variants in turbid media are urgently required in many industries such as the detergent and food industry. Here, a new method is presented to measure enzyme activity in different types of substrate suspensions. This method allows a semiquantitative determination of protease activity using native protein substrates. Unlike conventional techniques for measurement of enzyme activity, the BioLector technology enables online monitoring of scattered light intensity and fluorescence signals during the continuous shaking of samples in microtiter plates. The BioLector technique is hereby used to monitor the hydrolysis of an insoluble protein substrate by measuring the decrease of scattered light. The kinetic parameters for the enzyme reaction (V(max,app) and K(m,app)) are determined from the scattered light curves. Moreover, the influence of pH on the protease activity is investigated. The optimal pH value for protease activity was determined to be between pH 8 to 11 and the activities of five subtilisin serine proteases with variations in the amino acid sequence were compared. The presented method enables proteases from genetically modified strains to be easily characterized and compared. Moreover, this method can be applied to other enzyme systems that catalyze various reactions such as cellulose decomposition.  相似文献   

9.
We present an active oligonucleotide microarray platform for time-resolved F?rster-resonance-energy-transfer (TR-FRET) assays. In these assays, immobilized probe is labeled with a donor fluorophore and analyte target is labeled with a fluorescence quencher. Changes in the fluorescence decay lifetime of the donor are measured to determine the extent of hybridization. In this work, we demonstrate that TR-FRET assays have reduced sensitivity to variances in probe surface density compared with standard fluorescence-based microarray assays. Use of an active array substrate, fabricated in a standard complementary metal-oxide-semiconductor (CMOS) process, provides the additional benefits of reduced system complexity and cost. The array consists of 4096 independent single-photon avalanche diode (SPAD) pixel sites and features on-chip time-to-digital conversion. We demonstrate the functionality of our system by measuring a DNA target concentration series using TR-FRET with semiconductor quantum dot donors.  相似文献   

10.
In this paper, a therapeutic immunoglobulin (Antibody A) has been characterized in two solutions: (1) 0.1% acetic acid containing 50 mM magnesium chloride, a solution in which the immunoglobulin is stable, and (2) 10 mM sodium phosphate buffer pH approximately 7. The protein solutions were characterized by microscopy, asymmetrical flow field-flow fractionation (FFF), light scattering, circular dichroism, fluorescence and fluorescence lifetime spectroscopy. The results show that Antibody A dissolved in 0.1% acetic acid containing 50 mM magnesium chloride exists as 88% monomer, 2% low molecular weight aggregates and 10% high molecular weight aggregates (>1 million Dalton). In phosphate buffer, Antibody A formed micrometre-sized aggregates that were best characterized by fluorescence microscopy. The aggregation of Antibody A in phosphate buffer was shown to be concomitant with conformational changes in amino acid residue side chains. The aggregates formed in phosphate buffer were easily disrupted during FFF analysis, indicating that they are formed by weak interactions. The combination of microscopy, asymmetrical flow field-flow fractionation (FFF) and spectroscopy allowed a reliable assessment of protein self association and aggregation.  相似文献   

11.
Dragnea V  Waegele M  Balascuta S  Bauer C  Dragnea B 《Biochemistry》2005,44(49):15978-15985
AppA is a blue-light and redox-responding regulator of photosynthesis gene expression in Rhodobacter sphaeroides. Detailed time-resolved fluorescence spectroscopy and subpicosecond transient absorption spectroscopy study of the BLUF domain is presented for wild-type AppA (AppAwt) and a photoinactive Y21F mutant of AppA. The main findings discussed here are that (1) time-resolved laser excitation studies on dark-adapted protein show that AppAwt and Y21F mutant protein exhibits a fluorescence decay with a lifetime of 0.6 ns. Dark-adapted AppAwt but not Y21F also exhibits slower fluorescence decay with a lifetime of 1.7 ns. Analysis of AppAwt that was light-excited to a stable light-adapted form prior to data collection shows monoexponential fluorescence decay with a lifetime of 1.0 ns. This component disappeared after 1 min of data collection after which the original "dark-adapted" values were recovered, demonstrating the presence of a approximately 1 min lifetime intermediate during the return of AppA from light- to dark-adapted form. (2) Transient absorption spectral analysis reveals a very fast rising of transient absorption (<1 ps) for AppAwt. This fast component is missing in the Y21F mutant, which lacks Tyr21, giving rise to a slower transient absorption at 4-6 ps. In the AppAwt transient spectra, most ground states recover within approximately 30 ps, compared to approximately 90-130 ps in the mutant Y21F. We propose that a temporary electron transfer occurs from Tyr21 to the N5 of flavin in AppAwt and is a triggering event for subsequent hydrogen-bond rearrangements. Dynamics of the AppA photocycle is discussed in view of the currently solved crystallographic structure of AppA.  相似文献   

12.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

13.
pH‐shifts are a serious challenge in cofactor dependent biocatalytic oxidoreductions. Therefore, a pH control strategy was developed for reaction systems, where the pH value is not directly measurable. Such a reaction system is the biphasic aqueous‐organic reaction system, where the oxidoreduction of hydrophobic substrates in organic solvents is catalysed by hydrogel‐immobilized enzymes, and enzyme‐coupled cofactor regeneration is accomplished via formate dehydrogenase, leading to a pH‐shift. Dual lifetime referencing (DLR), a fluorescence spectroscopic method, was applied for online‐monitoring of the pH‐value within the immobilizates during the reaction, allowing for a controlled dosage of formic acid. It could be shown that by applying trisodium 8‐hydroxypyrene‐1, 3, 6‐trisulfonate as pH indicator and Ru(II) tris(4, 7‐diphenyl‐1, 10‐phenantroline) (Ru[dpp]) as a reference luminophore the control of the pH‐value in a macroscopic gel‐bead‐stabilized aqueous/organic two phase system in a range of pH 6.5 to 8.0 is possible. An experimental proof of concept could maintain a stable pH of 7.5 ± 0.15 during the reaction for at least 105 h. With these results, it could be shown that DLR is a powerful tool for pH‐control within reaction systems with no direct access for conventional pH‐measurement.  相似文献   

14.
This article describes a new method for direct fluorometric immunoassay with a liposome array using pH-sensitive dye (BCECF [2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein])-encapsulating liposomes immobilized on an avidin slip and gramicidin channels. The liposomes were composed of phosphatidylcholine (PC), cholesterol (Chol), biotinylated phosphatidylethanolamine (B-cap-PE), and recognition sites (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(2,4-dinitrophenyl) [DNP-PE], Fab' fragment of anti-substance P, and Fab' of anti-neurokinin A). The addition of gramicidin induced release of H(+) ions from the inner solution (pH 5.5) to the outer one (pH 7.8), enhancing fluorescence of BCECF (1.0mM) encapsulated in liposome. The binding of an analyte (anti-dinitrophenyl [anti-DNP], avidin, substance P, or neurokinin A) to the membrane-bound recognition sites caused further enhancement of fluorescence of BCECF due to a local distortion of the bilayer structure that affects the channel kinetics of gramicidin. The intensity of fluorescence from the immobilized liposomes 60 min after the addition of gramicidin (10 ng/ml) increased with an increase in the concentration of anti-DNP ranging from 1.2 x 10(-8) to 1.2 x 10(-6)g/ml, avidin ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml, substance P ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml, and neurokinin A ranging from 1.0 x 10(-8) to 1.0 x 10(-6)g/ml. The direct fluorometric immunoassay with a liposome array is simple and easy to carry out. The intensity of fluorescence emitted from the immobilized liposomes is directly measured after incubation with a sample solution and a gramicidin solution in sequence without washing steps. The assay allows simultaneous quantification of multiple components without labeling of antibody or antigen with a fluorescent tag. The liposome-based assay is discussed in terms of principle, sensitivity, and selectivity.  相似文献   

15.
Correct sorting of newly synthesized peroxisomal matrix proteins is dependent on a peroxisomal targeting signal (PTS). So far two PTSs are known. PTS1 consists of a tripeptide that is located at the extreme C terminus of matrix proteins and is specifically recognized by the PTS1-receptor Pex5p. We studied Hansenula polymorpha Pex5p (HpPex5p) using fluorescence spectroscopy. The intensity of Trp fluorescence of purified HpPex5p increased by 25% upon shifting the pH from pH 6.0 to pH 7.2. Together with the results of fluorescence quenching by acrylamide, these data suggest that the conformation of HpPex5p differs at these two pH values. Fluorescence anisotropy decay measurements revealed that the pH affected the oligomeric state of HpPex5p, possibly from monomers/dimers at pH 6.0 to larger oligomeric forms at pH 7.2. Addition of dansylated peptides containing a PTS1, caused some shortening of the average fluorescence lifetime of the Trp residues, which was most pronounced at pH 7.2. Our data are discussed in relation to a molecular model of HpPex5p based on the three-dimensional structure of human Pex5p.  相似文献   

16.
The phase equilibrium property and structural and dynamical properties of bovine vitreous body was studied by macroscopic observation of swelling behavior and dynamic light scattering under various conditions. It was found that the vitreous body collapses into a compact state isotropically or anisotropically depending on the external conditions. The vitreous body collapses while maintaining the shape when the pH (相似文献   

17.
In this paper we have tested two different procedures (the "three-step" and the "four-step" procedures) for the covalent immobilization of glutamate dehydrogenase (GDH) onto silicon supports. Atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), fluorescence spectroscopy and an enzymatic assay were used to probe the structure and activity of the immobilized enzyme. Our results demonstrate that coupling through the "three-step" procedure does not significantly affect either the fold pattern or the activity of the enzyme, suggesting that this method could be ideally suited to the development of high quality monolayers for use in enzyme-based planar biosensors.  相似文献   

18.
Conformational changes in pure and tropomyosin-containing F-actin during interaction with heavy meromyosin in the absence and presence of deoxy-ATP, were studied by measurements of the changes in fluorescence intensity of e-ADP2 incorporated into the F-actin instead of ADP. The actin filaments were found to be stabilized by tropomyosin and were more stable at pH 7 than at pH 8. The rigor binding of HMM to F-actin caused an increase in the fluorescence intensity. The increase with F-actin containing TM was higher than that with pure F-actin at each HMM concentration. A linear relation between the fluoresence change and moles of HMM per actin was found regardless of the presence of TM, with a maximum value of 0.5 moles of HMM per actin. In the presence of deoxy-ATP, (which is a substrate for acto-HMM but cannot bind to actin) no changes in fluorescence intensity of e-ADP bound to pure F-actin were observed. In the case of F-actin containing TM, the fluorescence intensity increased with increasing HMM concentration, although the light scattering intensity of the acto-HMM solutions indicated that almost all the HMM was dissociated from the F-actin. This suggests that the conformational change in F-actin-TM induced by the interaction with HMM in the presence of deoxy-ATP has a long lifetime which continues for some time even after the detachment of the HMM.  相似文献   

19.
This study compares Photosystem II (PS II) chlorophyll (Chl) a fluorescence yield changes of Arabidopsis thaliana L. nuclear gene mutants, thoughtfully provided by the authors of Pogson et al. (1998 Proc Natl Acad Sci USA 95: 13324–13329). One single mutant (npq1) inhibits the violaxanthin deepoxidase that converts violaxanthin to antheraxanthin and zeaxanthin. A second single mutant (lut2) inhibits the -cyclization enzyme step between lycopene and ,-carotene causing accumulation of ,-carotene derivatives, primarily the violaxanthin cycle pigments, at the expense of lutein. The double mutant (lut2-npq1) incorporates both lesions. PS II Chl a fluorescence was characterized in leaves and thylakoids using both steady state and time-resolved methods, the intrathylakoid pH was estimated by 9-aminoacridine fluorescence quenching and chloroplast pigments were determined by HPLC. Under maximal PS II Chl a fluorescence intensity conditions without intrathylakoid acidification, the main 2 nanosecond (ns) fluorescence lifetime distribution mode parameters were similar for the WT and mutants both before and after illumination. The light and ATPase mediated intrathylakoid pH levels were also similar and caused similar changes in the fluorescence lifetime distribution widths and centers for the WT and each mutant. The npq1 exhibited low antheraxanthin and zeaxanthin and high violaxanthin levels and the uncoupler-sensitive amplitudes of short (< 1 ns) PS II Chl a fluorescence distribution modes were strongly inhibited compared to the WT. Lutein deficiency coincided with pleiotropic effects on PS II energy dissipation and probably altered conformations of PS II carotenoid-chlorophyll binding proteins. The lut2 exhibited separate active and inactive pools of antheraxanthin and zeaxanthin with respect to all deepoxidation, epoxidation and fluorescence quenching activities. The active xanthophyll cycle pool in lut2 exhibited a lower (35% of WT) concentration efficiency, for a given intrathylakoid pH, to increase the sub-nanosecond distribution amplitudes, which predicts and explains inhibited induction kinetics and fluorescence quenching. The lut2-npq1 mutant exhibited a constant pool of antheraxanthin and zeaxanthin, no deepoxidation and little or no pH-reversible fluorescence decrease. It is concluded that in addition to intrathylakoid acidification, a certain level of zeaxanthin and antheraxanthin (or lutein) is absolutely required for the major reversible component of PS II Chl a fluorescence quenching.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
The interrelationship between the cation-induced fluorescence changes and the state of the photosystem 2 (PS-2) reaction centers for pea chloroplasts and their osmotic fragments was studied. The effects of K+ and Mg2+ on the fluorescence quantum yield (phi f1) under varying light intensities as well as on the fluorescence lifetime (tau f1) in the saturating light were demonstrated. K+ induces the decrease in tau f1; Mg2+ exerts an opposite effect. The effects were more pronounced when the reaction centers of PS-2 were converted into an inactive state by illuminating the sample with a saturating light or by adding DCMU. Under these conditions the cations' effect on tau f1 was accompanied by proportional changes in tau f1. It was concluded that in Mg-deficient chloroplasts an efficient channel of the excitation quenching appears in antenna chlorophyll of PS-2 with the rate constant of 7 . 10(8) s-1. The simultaneous measurements of tau f1 by phase and modulation type techniques allowed to reveal the emission heterogeneity within the nanosecond time interval and the DCMU-sensitive delayed fluorescence with the lifetime exceeding 10(-7) s and the overall quantum yield approximately equal to 2 . 10(-3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号