首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of multispanning inner mitochondrial membrane proteins utilize internal targeting signals, which direct them to the carrier translocase (TIM22 complex), for their import. MPV17 and its Saccharomyces cerevisiae orthologue Sym1 are multispanning inner membrane proteins of unknown function with an amino-terminal presequence that suggests they may be targeted to the mitochondria. Mutations affecting MPV17 are associated with mitochondrial DNA depletion syndrome (MDDS). Reconstitution of purified Sym1 into planar lipid bilayers and electrophysiological measurements have demonstrated that Sym1 forms a membrane pore. To address the biogenesis of Sym1, which oligomerizes in the inner mitochondrial membrane, we studied its import and assembly pathway. Sym1 forms a transport intermediate at the translocase of the outer membrane (TOM) complex. Surprisingly, Sym1 was not transported into mitochondria by an amino-terminal signal, and in contrast to what has been observed in carrier proteins, Sym1 transport and assembly into the inner membrane were independent of small translocase of mitochondrial inner membrane (TIM) and TIM22 complexes. Instead, Sym1 required the presequence of translocase for its biogenesis. Our analyses have revealed a novel transport mechanism for a polytopic membrane protein in which internal signals direct the precursor into the inner membrane via the TIM23 complex, indicating a presequence-independent function of this translocase.  相似文献   

2.
Import of nuclear-encoded mitochondrial preproteins is mediated by a general translocase in the outer membrane, the TOM complex, and by two distinct translocases in the mitochondrial inner membrane, the TIM23 complex and the TIM22 complex. Both TIM complexes cooperate with the TOM complex but facilitate import of different classes of precursor proteins. Precursors with an N-terminal presequence are imported via the TIM23 complex, whereas mitochondrial carrier proteins require the TIM22 complex for insertion into the inner membrane. This review discusses recent advances in understanding the structure and function of the translocases of the inner membrane and the possible role of Tim proteins in the development of the Mohr-Tranebjaerg syndrome, a mitochondrial disorder leading to neurodegeneration.  相似文献   

3.
Most mitochondrial proteins are transported from the cytosol into the or-ganelle. Due to the division of mitochondria into an outer and inner membrane, an inter-membrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

4.
《Journal of molecular biology》2019,431(15):2835-2851
Mitochondrial membrane proteins with internal targeting signals are inserted into the inner membrane by the carrier translocase (TIM22 complex). For this, precursors have to be initially directed from the TOM complex in the outer mitochondrial membrane across the intermembrane space toward the TIM22 complex. How these two translocation processes are topologically coordinated is still unresolved. Using proteomic approaches, we find that the human TIM22 complex associates with the mitochondrial contact site and cristae organizing system (MICOS) complex. This association does not appear to be conserved in yeast, whereby the yeast MICOS complex instead interacts with the presequence translocase. Using a yeast mic10Δ strain and a HEK293T MIC10 knockout cell line, we characterize the role of MICOS for protein import into the mitochondrial inner membrane and matrix. We find that a physiological cristae organization promotes efficient import via the presequence pathway in yeast, while in human mitochondria, the MICOS complex is dispensable for protein import along the presequence pathway. However, in human mitochondria, the MICOS complex is required for the efficient import of carrier proteins into the mitochondrial inner membrane. Our analyses suggest that in human mitochondria, positioning of the carrier translocase at the crista junction, and potentially in vicinity to the TOM complex, is required for efficient transport into the inner membrane.  相似文献   

5.
Most mitochondrial proteins are transported from the cytosol into the organelle. Due to the division of mitochondria into an outer and inner membrane, an intermembrane space and a matrix, an elaborated system for recognition and transport of preproteins has evolved. The translocase of the outer mitochondrial membrane (TOM) and the translocases of the inner mitochondrial membrane (TIM) mediate these processes. Receptor proteins on the cytosolic face of mitochondria recognize the cargo proteins and transfer them to the general import pore (GIP) of the outer membrane. Following the passage of preproteins through the outer membrane they are transported with the aid of the TIM23 complex into either the matrix, inner membrane, or intermembrane space. Some preprotein families utilize the TIM22 complex for their insertion into the inner membrane. The identification of protein components, which are involved in these transport processes, as well as significant insights into the molecular function of some of them, has been achieved in recent years. Moreover, we are now approaching a new era in which elaborated techniques have already allowed and will enable us to gather information about the TOM and TIM complexes on an ultrastructural level.  相似文献   

6.
The mitochondrial inner membrane contains numerous multispanning integral proteins. The precursors of these hydrophobic proteins are synthesized in the cytosol and therefore have to cross the mitochondrial outer membrane and intermembrane space to reach the inner membrane. While the import pathways of noncleavable multispanning proteins, such as the metabolite carriers, have been characterized in detail by the generation of translocation intermediates, little is known about the mechanism by which cleavable preproteins of multispanning proteins, such as Oxa1, are transferred from the outer membrane to the inner membrane. We have identified a translocation intermediate of the Oxa1 preprotein in the translocase of the outer membrane (TOM) and found that there are differences from the import mechanisms of carrier proteins. The intermembrane space domain of the receptor Tom22 supports the stabilization of the Oxa1 intermediate. Transfer of the Oxa1 preprotein to the inner membrane is not affected by inactivation of the soluble TIM complexes. Both the inner membrane potential and matrix heat shock protein 70 are essential to release the preprotein from the TOM complex, suggesting a close functional cooperation of the TOM complex and the presequence translocase of the inner membrane. We conclude that mitochondria employ different mechanisms for translocation of multispanning proteins across the aqueous intermembrane space.  相似文献   

7.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

8.
Biogenesis of mitochondria requires import of several hundreds of different nuclear-encoded preproteins needed for mitochondrial structure and function. Import and sorting of these preproteins is a multistep process facilitated by complex proteinaceous machineries located in the mitochondrial outer and inner membranes. The translocase of the mitochondrial outer membrane, the TOM complex, comprises receptors which specifically recognize mitochondrial preproteins and a protein conducting channel formed by TOM40. The TOM complex is able to insert resident proteins into the outer membrane and to translocate proteins into the intermembrane space. For import of inner membrane or matrix proteins, the TOM complex cooperates with translocases of the inner membrane, the TIM complexes. During the past 30 years, intense research on fungi enabled the identification and mechanistic characterization of a number of different proteins involved in protein translocation. This review focuses on the contributions of the filamentous fungus Neurospora crassa to our current understanding of mitochondrial protein import, with special emphasis on the structure and function of the TOM complex.  相似文献   

9.
Proteins targeted to the mitochondrial matrix are translocated through the outer and the inner mitochondrial membranes by two protein complexes, the translocase of the outer membrane (TOM) and one of the translocases of the inner membrane (TIM23). The protein Tim23, the core component of TIM23, consists of an N‐terminal, soluble domain in the intermembrane space (IMS) and a C‐terminal domain that forms the import pore across the inner membrane. Before translocation proceeds, precursor proteins are recognized by the N‐terminal domain of Tim23, Tim23N (residues 1–96). By using NMR spectroscopy, we show that Tim23N is a monomeric protein belonging to the family of intrinsically disordered proteins. Titrations of Tim23N with two presequences revealed a distinct binding region of Tim23N formed by residues 71–84. In a charge‐hydropathy plot containing all soluble domains of TOM and TIM23, Tim23N was found to be the only domain with more than 40 residues in the IMS that is predicted to be intrinsically disordered, suggesting that Tim23N might function as hub in the mitochondrial import machinery protein network.  相似文献   

10.
Protein translocation pathways of the mitochondrion   总被引:4,自引:0,他引:4  
Koehler CM 《FEBS letters》2000,476(1-2):27-31
The biogenesis of mitochondria depends on the coordinated import of precursor proteins from the cytosol coupled with the export of mitochondrially coded proteins from the matrix to the inner membrane. The mitochondria contain an elaborate network of protein translocases in the outer and inner membrane along with a battery of chaperones and processing enzymes in the matrix and intermembrane space to mediate protein translocation. A mitochondrial protein, often with an amino-terminal targeting sequence, is escorted through the cytosol by chaperones to the TOM complex (translocase of the outer membrane). After crossing the outer membrane, the import pathway diverges; however, one of two TIM complexes (translocase of inner membrane) is generally utilized. This review is focused on the later stages of protein import after the outer membrane has been crossed. An accompanying paper by Lithgow reviews the early stages of protein translocation.  相似文献   

11.
The presequence translocase of the inner mitochondrial membrane (TIM23 complex) operates at a central junction of protein import. It accepts preproteins from the outer membrane TOM complex and directs them to inner membrane insertion or, in cooperation with the presequence translocase-associated motor (PAM), to the matrix. Little is known of how the TIM23 complex coordinates these tasks. We have identified Tim21 (YGR033c) that interacts with the TOM complex. Tim21 is specific for a TIM23 form that cooperates with TOM and promotes inner membrane insertion. Protein translocation into the matrix requires a switch to a Tim21-free, PAM bound presequence translocase. Tim17 is crucial for the switch by performing two separable functions: promotion of inner membrane insertion and binding of Pam18 to form the functional TIM-PAM complex. Thus, the presequence translocase is not a static complex but switches between TOM tethering and PAM binding in a reaction cycle involving Tim21 and Tim17.  相似文献   

12.
Tim23, a key component of the mitochondrial preprotein translocase, is anchored in the inner membrane by its C-terminal domain and exposes an intermediate domain in the intermembrane space that functions as a presequence receptor. We show that the N-terminal domain of Tim23 is exposed on the surface of the outer membrane. The two-membrane-spanning topology of Tim23 is a novel characteristic in membrane biology. By the simultaneous integration into two membranes, Tim23 forms contacts between the outer and inner mitochondrial membranes. Tethering the inner membrane translocase to the outer membrane facilitates the transfer of precursor proteins from the TOM complex to the TIM23 complex and increases the efficiency of protein import.  相似文献   

13.
Role of Tim21 in mitochondrial translocation contact sites   总被引:9,自引:0,他引:9  
Translocation of preproteins with N-terminal presequences into mitochondria requires the cooperation of the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). However, the molecular nature of the translocation contact sites is poorly understood. We have identified a novel component of the TIM23 translocase, Tim21, which is involved in their formation. Tim21 is anchored in the mitochondrial inner membrane by a single transmembrane domain and exposes its C-terminal domain into the intermembrane space. The purified C-terminal domain of Tim21 appears not to bind to any of the TIM23 components but rather specifically interacts with the TOM complex. We propose that Tim21 binds to the trans site of the TOM complex thus keeping the two translocases in close contact.  相似文献   

14.
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. We isolated the TIM23 complex of Neurospora crassa. Besides Tim23 and Tim17, it contained a novel component, referred to as Tim50. Tim50 spans the inner membrane with a single transmembrane segment and exposes a large hydrophilic domain in the intermembrane space. Tim50 is essential for viability of yeast. Mitochondria from cells depleted of Tim50 displayed strongly reduced import kinetics of preproteins using the TIM23 complex. Tim50 could be cross-linked to preproteins that were halted at the level of the translocase of the outer membrane (TOM complex) or spanning both TOM and TIM23 complexes. We suggest that Tim50 plays a crucial role in the transfer of preproteins from the TOM complex to the TIM23 complex through the intermembrane space.  相似文献   

15.
Many mitochondrial proteins are synthesized with N-terminal presequences in the cytosol. The presequence translocase of the inner mitochondrial membrane (TIM23) translocates preproteins into and across the membrane and associates with the matrix-localized import motor. The TIM23 complex consists of three core components and Tim21, which interacts with the translocase of the outer membrane (TOM) and the respiratory chain. We have identified a new subunit of the TIM23 complex, the inner membrane protein Mgr2. Mitochondria lacking Mgr2 were deficient in the Tim21-containing sorting form of the TIM23 complex. Mgr2 was required for binding of Tim21 to TIM23(CORE), revealing a binding chain of TIM23(CORE)-Mgr2/Tim21-respiratory chain. Mgr2-deficient yeast cells were defective in growth at elevated temperature, and the mitochondria were impaired in TOM-TIM23 coupling and the import of presequence-carrying preproteins. We conclude that Mgr2 is a coupling factor of the presequence translocase crucial for cell growth at elevated temperature and for efficient protein import.  相似文献   

16.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

17.
Mitochondria were derived from intracellular bacteria and the mitochondrial intermembrane space is topologically equivalent to the bacterial periplasm. Both compartments contain ATP-independent chaperones involved in the transport of hydrophobic membrane proteins. The mitochondrial TIM (translocase of the mitochondrial inner membrane) 10 complex and the periplasmic chaperone SurA were examined in terms of evolutionary relation, structural similarity, substrate binding specificity and their function in transporting polypeptides for insertion into membranes. The two chaperones are evolutionarily unrelated; structurally, they are also distinct both in their characteristics, as determined by SAXS (small-angle X-ray scattering), and in pairwise structural comparison using the distance matrix alignment (DALILite server). Despite their structural differences, SurA and the TIM10 complex share a common binding specificity in Pepscan assays of substrate proteins. Comprehensive analysis of the binding on a total of 1407 immobilized 13-mer peptides revealed that the TIM10 complex, like SurA, does not bind hydrophobic peptides generally, but that both chaperones display selectivity for peptides rich in aromatic residues and with net positive charge. This common binding specificity was not sufficient for SurA to completely replace TIM10 in yeast cells in vivo. In yeast cells lacking TIM10, when SurA is targeted to the intermembrane space of mitochondria, it binds translocating substrate proteins, but fails to completely transfer the substrate to the translocase in the mitochondrial inner membrane. We suggest that SurA was incapable of presenting substrates effectively to the primitive TOM (translocase of the mitochondrial outer membrane) and TIM complexes in early mitochondria, and was replaced by the more effective small Tim chaperone.  相似文献   

18.
Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria via the TOM40 (translocase of the mitochondrial outer membrane 40) complex, and follow several distinct sorting pathways to reach their destination submitochondrial compartments. Phosphate carrier (PiC) is an inner membrane protein with 6 transmembrane segments (TM1-TM6) and requires, after translocation across the outer membrane, the Tim9-Tim10 complex and the TIM22 complex to be inserted into the inner membrane. Here we analyzed an in vitro import of fusion proteins between various PiC segments and mouse dihydrofolate reductase. The fusion protein without TM1 and TM2 was translocated across the outer membrane but was not inserted into the inner membrane. The fusion proteins without TM1-TM4 were not inserted into the inner membrane but instead translocated across the inner membrane. Functional defects of Tim50 of the TIM23 complex caused either by depletion of the protein or the addition of anti-Tim50 antibodies blocked translocation of the fusion proteins without TM1-TM4 across the inner membrane, suggesting that lack of TM1-TM4 led to switch of its sorting pathway from the TIM22 pathway to the TIM23 pathway. PiC thus appears to have a latent signal for sorting to the TIM23 pathway, which is exposed by reduced interactions with the Tim9-Tim10 complex and maintenance of the import competence.  相似文献   

19.
Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the β-barrel channel Tom40 and additional subunits each with single, α-helical transmembrane segments. How α-helical transmembrane segments might be assembled onto a transmembrane β-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.  相似文献   

20.
Aqueous channels are at the core of the translocase of the outer membrane (TOM) and the translocase of the inner membrane for the transport of preproteins (TIM23), the translocases mediating the transport of proteins across the outer and inner mitochondrial membranes. Yet, the existence of a channel associated to the translocase of the inner membrane for the insertion of multitopic protein (TIM22) complex has been arguable, as its function relates to the insertion of multispanning proteins into the inner membrane. For the first time, we report conditions for detecting a channel activity associated to the TIM22 translocase in organelle, i.e. intact mitoplasts. An internal signal peptide in the intermembrane space of mitochondria is a requisite to inducing this channel, which is otherwise silent. The channel showed slightly cationic and high conductance activity of 1000 pS with a predominant half-open substate. Despite their different composition, the channels of the three mitochondrial translocases were thus remarkably similar, in agreement with their common task as pores transiently trapping proteins en route to their final destination. The opening of the TIM22 channel was a step-up process depending on the signal peptide concentration. Interestingly, low membrane potentials kept the channel fully open, providing a threshold level of the peptide is present. Our results portray TIM22 as a dynamic channel solely active in the presence of its cargo proteins. In its fully open conformation, favored by the combined action of internal signal peptide and low membrane potential, the channel could embrace the in-transit protein. As insertion progressed and initial interaction with the signal peptide faded, the channel would close, sustaining its role as a shunt that places trapped proteins into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号