首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depth of dormancy of alpine and subalpine perennial forbs in autumn was investigated, which was judged by the number of days required for growth initiation at 24 °C. The depth of dormancy differed depending on Raunkiaer’s life-form and shoot habits. Chamaephytes with perennial shoot-axes showed shallower dormancy than hemicryptophytes with annual shoot-axes, and geophytes with annual shoot-axes showed the deepest dormancy. The results strongly suggest that the dormancy is more endogenously controlled in forbs less hardy to freezing stress. Potential growth ability of alpine herbaceous chamaephytes in autumn is an adaptive advantage, since they utilize the short vegetative period as long as possible. All of the species with annual shoot-axes had winter buds covered with scales. In plants with perennial shoot-axes, percentage of winter buds covered with scales increased with increasing depth of dormancy. The results indicate that the shoot apices are well protected by bud scales in forbs with a long endogeneous-dormant period.  相似文献   

2.
Foliar application of imazamethabenz at sublethal doses of 100 and 200 g a.i./ha to wild oat plants at the two-leaf stage without tillers greatly inhibited the growth of the main shoot but increased tillering. The near cessation of sheath and the main stem elongation indicated that the major effect of imazamethabenz on the main shoot was inhibition of intercalary growth. Low doses of imazameth-abenz treatment resulted in more leaves (including leaf primordia) in the main stem but did not affect mature first and second leaves. Sublethal doses of imazamethabenz only briefly inhibited tiller growth. A later increase in tillering in treated plants resulted from the stimulated resumed growth of tillers and the increased initiation of tiller buds. Such enhanced tillering mainly resulted from the release of apical dominance due to the inhibition or cessation of the main stem growth with imazamethabenz treatment. Both doses of imazamethabenz (100 and 200 g a.i./ha) significantly reduced the biomass of shoots and roots, but increased the ratio of roots/ shoots dry weight.  相似文献   

3.
Effects of growth temperature and winter duration on leaf longevity were compared between a spring ephemeral, Gagea lutea, and a forest summergreen forb, Maianthemum dilatatum. The plants were grown at day/night temperatures of 25/20°C and 15/10°C after a chilling treatment for variable periods at 2°C. The temperature regime of 25/20°C was much higher than the mean air temperatures for both species in their native habitats. Warm temperature of 25/20°C and/or long chilling treatment shortened leaf longevity in G. lutea, but not in M. dilatatum. The response of G. lutea was consistent with that reported for other spring ephemerals. Air temperature increases as the vegetative season progresses. The decrease in leaf longevity in G. lutea under warm temperature condition ensures leaf senescence in summer, an unfavorable season for its growth. This also implies that early leaf senescence could occur in years with early summers. Warm spring temperatures have been shown to accelerate the leafing-out of forest trees. The decrease in leaf longevity due to warm temperature helps synchronize the period of leaf senescence roughly with the time of the forest canopy leaf-out. Prolonged winter due to late snowmelt has been shown to shorten the vegetative period for spring ephemerals. The decrease in leaf longevity due to long chilling treatment would correspond with this shortened vegetative period.  相似文献   

4.
Accurate prediction of the timing of leaf area development isessential to analyse and predict the responses of crops to theenvironment. In this paper, we analyse the two processes determiningthe chronology of leaf development—initiation of leafprimordia by the shoot meristem and production of expanded leavesout of the shoot tip—in several pea (Pisum sativumL.)cultivars in response to air temperature and plant growth rate.Contrasting levels of air temperature and plant growth rateduring leaf development were induced by a wide range of sowingdates and plant densities in glasshouse or field experiments.Full leaf expansion was found to occur one phyllochron afterfull leaf unfolding, whatever the leaf nodal position. Primordiuminitiation and expanded leaf production rates presented similarquantitative responses to air temperature (linear response andcommonx-intercept), whatever the plant growth rate, cultivaror period of cycle. As a consequence, they were co-ordinatedand the numbers of initiated primordia or expanded leaves wereeasily deduced from simple visual observation of leaf unfolding.The change, over time, of the numbers of initiated leaf primordiaand fully expanded leaves correlated with cumulated degree-days,with stable relationships in a wide range of environmental conditions.Two phases, with different production rates, had to be considered.These results allowed us to predict accurately the beginningand the end of individual leaf development from daily mean airtemperatures. The relationships obtained here provide an effectiveway of analysing and predicting leaf development responses tothe environment. Pisum sativumL.; pea; number of leaf primordia; number of leaves; temperature; modelling  相似文献   

5.
Morphogenesis of floral structures, dynamics of reproductive development from floral initiation until fruit maturation, and leaf turnover in vegetative short-stem shoots of Saxifraga oppositifolia were studied in three consecutive years at an alpine site (2300 m) and at an early- and late-thawing subnival site (2650 m) in the Austrian Alps. Marked differences in the timing and progression of reproductive and vegetative development occurred: individuals of the alpine population required a four-month growing season to complete reproductive development and initiate new flower buds, whereas later thawing individuals from the subnival sites attained the same structural and functional state within only two and a half months. Reproductive and vegetative development were not strictly correlated because timing of flowering, seed development, and shoot growth depended mainly on the date of snowmelt, whereas the initiation of flower primordia was evidently controlled by photoperiod. Floral induction occurred during June and July, from which a critical day length for primary floral induction of about 15 h could be inferred. Preformed flower buds overwinter in a pre-meiotic state and meiosis starts immediately after snowmelt in spring. Vegetative short-stem shoots performed a full leaf turnover within a growing season: 16 (+/-0.8 SE) new leaves per shoot developed in alpine and early-thawing subnival individuals and 12 (+/-1.2 SE) leaves in late-thawing subnival individuals. New leaf primordia emerged continuously from snowmelt until late autumn, even when plants were temporarily covered with snow. Differences in the developmental dynamics between the alpine and subnival population were independent of site temperatures, and are probably the result of ecotypic adaptation to differences in growing season length.  相似文献   

6.
Apical Growth Cessation and Shoot Tip Abscission in Salix   总被引:1,自引:0,他引:1  
Time course of apical shoot growth and shoot tip abortion in northern ecotypes (lat. 69°39′N, long. 18°37′E) of Salix pentandra and S. caprea have been investigated. In trees more than 15 years old growing under natural climatic conditions apical growth cessation and shoot tip abortion normally occurred in June-July when the day length still was 24 h. Application of GA3, in spring to the apex effectively delayed growth cessation and shoot tip abortion. Application of kinetin was without effect. First-year seedlings of both species grew continuously at temperatue of 9 to 24°C in 24 h photoperiod. Short days induced apical growth cessation, but two to four (S. pentandra) or three to five (S. caprea) weeks of 12 h photoperiod were required to stop the elongation growth. The results indicated that the critical photoperiod for apical growth cessation in the used ecotype of S. pentandra was 16 to 18 h at 18°C. Short days had a minor effect only on the formation of apical leaf primordia in small seedlings. Development of axillary buds and radial growth were stimulated by short days when compared with long days. Small seedlings of both species (3 to 8 cm high at the start) formed terminal buds in short days, but in large seedlings (more than about 15 cm high) apical growth cessation was accompanied by shoot tip abortion. Abscisic acid applied to the apex or through a leaf did not induce growth cessation in S. pentandra seedlings grown in continuous light. The growth retardants CCC, B-9 and Phosphon D reduced growth rate under continuous light and induced shoot tip abortion in some plants. The effect of CCC was counteracted by GA3. Apical growth cessation in short days was significantly delayed by a single GA1 application.  相似文献   

7.
Leaf growth patterns were investigated in 11 evergreen (with leaf life-spans of just more than 1 year) and 15 deciduous species, occurring along an elevational gradient of 600–2200 m elevation in the Central Himalaya. Records were made of the leaf initiation period, leaf population dynamics, leaf expansion, leaf mass changes, leaf longevity and related parameters. Species of both groups produced leaves at similar rates during March to April, the driest period of the year. Species of both groups had approximately fully developed foliage during the warm, wet period (mid-June to mid-September) of the monsoon. However, significant differences were found at group level in other characters: shoot length (19.5 cm per shoot for deciduous and 11.7 cm for evergreen species); leaf population per 10 cm shoot length (4.7 vs 15.0); leaf area (107.9 vs 41.4 cm2/ leaf); specific leaf mass (106.9 vs 191.3 g/m2); and leaf mass loss after the monsoon period, being rapid and higher (31.6%) in deciduous species and slow and limited in the evergreens (26.2%). However, species of the two groups showed considerable overlaps in the values of above characters. The evergreen species of the Central Himalaya resembled the deciduous species of the region more than the multi-year leaves of clearly evergreen species. The evergreens bear leaves throughout the year, but like deciduous species bear the cost of annual replacement of old leaves by new leaves. They seem to outcompete deciduous species by producing annually a greater mass of leaves of low-carbon cost (per unit leaf mass), which is capable of conducting photosynthesis all year round. A situation of less marked contrast between favourable and nonfavourable periods, with respect to temperature, seems to favour the leaf characters of the evergreens.  相似文献   

8.
Aims Alpine ecosystems may experience larger temperature increases due to global warming as compared with lowland ecosystems. Information on physiological adjustment of alpine plants to temperature changes can provide insights into our understanding how these plants are responding to current and future warming. We tested the hypothesis that alpine plants would exhibit acclimation in photosynthesis and respiration under long-term elevated temperature, and the acclimation may relatively increase leaf carbon gain under warming conditions.Methods Open-top chambers (OTCs) were set up for a period of 11 years to artificially increase the temperature in an alpine meadow ecosystem. We measured leaf photosynthesis and dark respiration under different light, temperature and ambient CO2 concentrations for Gentiana straminea, a species widely distributed on the Tibetan Plateau. Maximum rates of the photosynthetic electron transport (J max), RuBP carboxylation (V c max) and temperature sensitivity of respiration Q 10 were obtained from the measurements. We further estimated the leaf carbon budget of G. straminea using the physiological parameters and environmental variables obtained in the study.Important findings1)?The OTCs consistently elevated the daily mean air temperature by ~1.6°C and soil temperature by ~0.5°C during the growing season. 2)?Despite the small difference in the temperature environment, there was strong tendency in the temperature acclimation of photosynthesis. The estimated temperature optimum of light-saturated photosynthetic CO2 uptake (A max) shifted ~1°C higher from the plants under the ambient regime to those under the OTCs warming regime, and the A max was significantly lower in the warming-acclimated leaves than the leaves outside the OTCs. 3)?Temperature acclimation of respiration was large and significant: the dark respiration rates of leaves developed in the warming regime were significantly lower than leaves from the ambient environments. 4)?The simulated net leaf carbon gain was significantly lower in the in situ leaves under the OTCs warming regime than under the ambient open regime. However, in comparison with the assumed non-acclimation leaves, the in situ warming-acclimated leaves exhibited significantly higher net leaf carbon gain. 5)?The results suggest that there was a strong and significant temperature acclimation in physiology of G. straminea in response to long-term warming, and the physiological acclimation can reduce the decrease of leaf carbon gain, i.e. increase relatively leaf carbon gain under the warming condition in the alpine species.  相似文献   

9.
C4 plants are uncommon in cold environments and do not generally occur in the alpine tundra. In the White Mountains of California, however, the C4 grass Muhlenbergia richardsonis is common in the alpine zone at 3,300-3,800 m, with the highest population observed at 3,960 m (13,000 feet) above sea level. This is the highest reported C4 species in North America and is near the world altitude limit for C4 plants (4,000-4,500 m). Above 3,800 m, M. richardsonis is largely restricted to southern slope aspects, with greatest frequency on southeast-facing slopes. In open tundra, M. richardsonis formed prostrate mats with a mean height of 2.5 cm. Neighboring C3 grasses were two to three times taller. Because of its short stature, leaf temperature of M. richardsonis was greatly influenced by the boundary layer of the ground, rising over 20°C above air temperature in full sun and still air and over 10°C above air temperature in full sun and wind velocity of 1-4 m s-1. Thus, although air temperatures did not exceed 15°C, midday leaf temperatures of M. richardsonis were routinely between 25°C and 35°C, a range favorable to C4 photosynthesis. At night, leaf temperature of M. richardsonis was often 5-12°C below air temperature, resulting in regular exposure to subzero temperatures and frosting of the leaves. No visible injury was associated with exposure to freezing night temperatures. The presence of M. richardsonis in the alpine zone demonstrates that C4 plants can tolerate extreme cold during the growing season. The localization to microsites where leaf temperatures can exceed 25°C during the day, however, indicates that even when cold tolerant, C4 plants still require periods of high leaf temperature to remain competitive with C3 species. In this regard, the prostrate growth form of M. richardsonis compensates for the alpine climate by allowing sufficient heating of the leaf canopy during the day.  相似文献   

10.
I examined the effects of growth temperature and winter duration on the leaf phenology of Fauria crista-galli plants, which have an indeterminate growth habit. After a 220-day chilling treatment, the leaf expansion and green periods of plants maintained at 25/20°C were much longer than those of plants maintained at 15/10°C and of plants at the natural habitat obtained in a previous study. The results indicate that early growth cessation and early leaf senescence in the natural habitat are not only due to endogenous rhythm but determined to some extent by cool summer temperatures. When grown at 15/10°C, the green period of individual leaves and plants was much shorter after a long chilling treatment (220 days) than after a short chilling treatment (110 days). The plants sprouted during or immediately after the termination of chilling treatment, suggesting that the decrease in the green period results partly from an advance of endogenous developmental stages during the chilling treatment and that the timing of snowmelt potentially affects the time of leaf senescence in the natural habitat.  相似文献   

11.
Data on the effects of air temperature increase by 4°C on leaf growth and water relation parameters in barley (Hordeum vulgare L.) plants in original cv. Steptoe and its ABA-deficient mutant (AZ24) are presented. An increase in temperature firstly resulted in the cessation of leaf elongation in both genotypes; however, later in cv. Steptoe plants, as distinct from mutants, the rate of leaf length increment was completely restored. Before air warming, transpiration was more intense in mutant plants; at increased temperature, transpiration was activated in both genotypes. After growth resumption, the water potential in cv. Steptoe plants somewhat increased as compared with initial level (before warming). In AZ34 leaves, in contrast, the water potential, which was initially below that in cv. Steptoe leaves, reduced after temperature increase. The calculation of total hydraulic conductivity of the plants and osmotic hydraulic conductivity in the roots showed that these parameters increased in cv. Steptoe and were not changed in AZ34 mutants. At temperature increase, the level of ABA was not changed in AZ34 mutants, whereas in Steptoe plants it increased in the roots and decreased in the shoots. It was concluded that a capability of ABA synthesis is required for the control of total hydraulic conductivity under changing environmental conditions.  相似文献   

12.
Flowering shoots of Muehlenbeckia platyclados Meisn. bear only reduced scale leaves which resemble the membranous sheath portion (ochrea) of leaves of other members of the Polygonaceae. Shoots propagated from cuttings bear enlarged foliage leaves with distinct lamina, petiole, and ochrea zones. The developmental basis for this heterophylly is explored in order to determine whether scale leaves resemble foliage leaves in their pattern of ontogeny or are developmentally unique. SEM and histological analyses have shown that scale leaves and foliage leaves are distinctive from inception. The scale leaf arises as a collarlike growth and extends over the shoot apex as a hooded sheath without evidence of blade initiation. By contrast, the first stage of foliage-leaf ontogeny is the differentiation of the distal lamina from the future leaf base. As the foliage-leaf ochrea encircles the stem axis, the lamina grows erect and projects from the abaxial surface of the sheath. Lamina reduction coupled with ochrea elaboration in intermediate leaf types indicate a homology between the entire scale leaf and foliage-leaf ochrea. Despite this homology, the production of the bladeless scale leaf does not involve a mere suppression of the foliage-leaf lamina. Erect growth of the saccate ochrea of the foliage leaf contrasts with the hooded expansion of the scale. Early histological differences, including contrasting rates of cell differentiation, also distinguish the two organs. This disparity in modes of growth and differentiation from inception results from separate, predetermined courses of ontogeny. Unlike other plants studied, leaf size and degree of leaf elaboration decrease with shoot meristem enlargement in Muehlenbeckia. Leaf packing does increase with shoot development and may contribute to variations in leaf morphology. It is concluded that the peculiarities of the heterophyllic leaf sequence in Muehlenbeckia are a property of the shoot system as a whole.  相似文献   

13.
Curd Initiation in the Cauliflower: I. JUVENILITY   总被引:1,自引:0,他引:1  
Hand, D. J. and Atherton, J. G. 1987. Curd initiation in thecauliflower. I. Juvenility.—J. exp. Bot. 38: 2050–2058. Four cauliflower (Brassica oleracea var. botrytis L.) cultivarswere screened for differences in juvenility, measured as thephase of insensitivity to vernalization. Juvenility persisteduntil the initiation of a critical number of leaves which sharplydefined transition to the sensitive, mature form at 13 to 15leaves in cv. Perfection and at 17 to 19 leaves in cv. WhiteFox. Preliminary investigation showed transition in cv. AlphaCliro to occur between 9 and 18 leaves initiated and in cv.Dole after 19 leaves. Leaf number was a stable marker of theend of juvenility in plants grown under different light conditions,whereas time, leaf area and leaf dry weight were not. Leaf numberwas linearly related to log whole shoot dry weight. The rateof leaf initiation in plants of cv. Perfection growing duringthe juvenile phase was approximately one third that of plantsin the mature phase, when measured on a thermal time base. Chilling mature, vegetative plants at 5 °C for 28 d advancedcurd initiation by up to 35 leaves in cv. Perfection; 27 leavesin cv. White Fox; 27 leaves in cv. Alpha Cliro and 21 leavesin cv. Dok, compared with plants grown continuously at 20 °C. Key words: Cauliflower, vernalization, juvenility  相似文献   

14.
Plants growing on rich soil usually have thin leaves with large specific leaf area. On the other hand, at intraspecific level; soil fertilization results in leaves size increasing which, in turn, can lead to reduction in specific leaf area. To what extent soil fertilization implies only leaves increasing in size and does not affect other eco-morphological characteristics is a question that is still open. To assess coherence between plants intraspecific reactions to changes in soil richness and general tendencies in changes of leaves parameters in communities with different productivity, an experiment has been conducted in alpine plant communities of the north-western Caucasus. Changes in leaf traits are studied in four types of alpine plant communities after long term application of mineral nutrients (NP and lime treatment). It is shown that in all species, except legume Hedysarum caucasicum, fertilization results in size leaf characteristics (leaf area, wet and dry mass) increase. Specific leaf area appears to decrease in plants inhabiting alpine heathlands and increase in plants inhabiting alpine snow beds and in dominant species of Geranium-Hedysarum meadows, Geranium gymnocaulon. After correction of specific leaf area that accounts for changes in leaf size, it becomes discernable that in most species the increase in leaf area per se results in specific leaf area reduction while changes in leaf structure under influence of fertilization leads to this trait increasing. Those species demonstrating the increase in specific leaf area as an effect of fertilization, also gain more in terms of biomass.  相似文献   

15.
Summary Studies were conducted to examine the importance of nitrogen storage to seasonal aboveground growth in the alpine herb Bistorta bistortoides. Stored reserves accounted for 60% of the total nitrogen allocated to the shoot during the growing season. The stored nitrogen was equally partitioned between preformed buds of the shoot and the roots/rhizome. Reliance on stored N was similar in populations of a 105-day growing season site and of a 75-day growing season site. Contrary to our initial hypothesis, stored nitrogen reserves were not used to extend the growing season of this species into the late-spring when soils are still cold, and saturated with snow-melt water. The time at which stored nitrogen was used to initiate shoot growth coincided with the time of root initiation, rapid soil warming, and near maximum soil concentrations of NO inf3 sup– and NH inf4 sup+ . Thus, nitrogen demand and soil nitrogen supply were both high at the same time. The importance of nitrogen storage in this species appeared to be in satisfying the high demand of simultaneous vegetative and reproductive growth during the early-growing season after soils thawed. The initiation of rapid leaf and inflorescence growth occurred in mid-June in both sites. The maximum pool size of shoot nitrogen (maximum nitrogen demand) occurred only 12 days later in the long season site, and 28 days later in the short season site. The early-season utilization of nitrogen stores allows plants of this species to initiate reproductive allocation at the same time vegetative tissues are exhibiting maximal growth rates. By releasing vegetative and reproductive growth from competition for nitrogen, seeds could mature early in the alpine growing season, before the frost probability sharply increases in mid-August.  相似文献   

16.
The effect of increasing spore concentration of Alternaria solani (Early blight disease) on the shoot growth of young tomato plants was analysed. Changes in growth were related to the severity of infection which increased with increasing inoculum. Leaf production was not affected but dry weights and especially leaf expansion were decreased. The effective leaf areas of the five inoculated leaves (L1-L5 numbered from the plant base) were drastically decreased by expanding necrotic lesions and, to a lesser extent, by premature leaf fall. Healthy leaves expanding soon after inoculation (L6, L7) were markedly affected by the disease on the lower leaves and had decreased specific leaf areas (ratio of leaf area to leaf dry weight) but later formed (from L8) leaves were less affected and had greater specific leaf areas than equivalent leaves on uninoculated plants.  相似文献   

17.
Background and Aims: Leaves expand during a given period of time until they reachtheir final size and form, which is called determinate growth.Duration of leaf expansion is stable when expressed in thermal-timeand in the absence of stress, and consequently it is often proposedthat it is controlled by a robust programme at the plant scale.The usual hypothesis is that growth cessation occurs when cellexpansion becomes limited by an irreversible tightening of cellwall, and that leaf size is fixed once cell expansion ceases.The objective of this paper was to test whether leaf expansioncould be restored by rewatering plants after a long soil water-deficitperiod. Methods: Four experiments were performed on two different species (Arabidopsisthaliana and Helianthus annuus) in which the area of leavesthat had apparently reached their final size was measured uponreversal of water stresses of different intensities and durations. Key Results: Re-growth of leaves that had apparently reached their finalsize occurred in both species, and its magnitude depended onlyon the time elapsed from growth cessation to rewatering. Leafarea increased up to 186% in A. thaliana and up to 88% in H.annuus after rewatering, with respect to the leaves of plantsthat remained under water deficit. Re-growth was accounted forby cell expansion. Increase in leaf area represented actualgrowth and not only a reversible change due to increased turgor. Conclusions: After the leaf has ceased to grow, leaf cells retain their abilityto expand for several days before leaf size becomes fixed. Aresponse window was identified in both species, during whichthe extent of leaf area recovery decreased with time after the‘initial’ leaf growth cessation. These results suggestthat re-growth after rewatering of leaves having apparentlyattained their final size could be a generalized phenomenon,at least in dicotyledonous plants.  相似文献   

18.
Field experiments were conducted in St Paul, MN, USA, to test the hypothesis that early season declines in the red:far-red ratio (R:FR) associated with FR reflection from neighbouring leaves have a role in regulating barley development. Treatment plants were grown adjacent to densely sown border rows of barley. The borders functioned to reflect far-red (FR), which reduced R:FR within the treatment plant light environment without shading treatment plants. Barriers were set in the soil to minimize root interactions between treatment plants and borders. Treatment plants were spaced either 2 or 16 cm apart. The presence of borders significantly increased shoot leaf and internode lengths at both plant spacings. Leaf sheath length data suggest that interactions between 2 cm spaced treatment plants enhanced plant responsiveness to the presence of borders. Border treatments shortened the period of vegetative growth prior to initiation of main shoot floral primordia. Bordered plants formed fewer main shoot leaves, initiated internode elongation at a lower node, and had slightly earlier heading dates than unbordered controls. Leaf appearance rate was not influenced by border treatments. We conclude that barley shoot development is photomorphogenically modulated by R:FR. Early season shifts in R:FR could have a significant influence on shoot development given that barley has the capacity to detect and developmentally respond to declines in R:FR associated with FR reflection from neighbours.  相似文献   

19.
We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.  相似文献   

20.
The direction and extent of GA transport in Pinto beans has been studied. The increase in growth rate was used as a measure of the amount of GA which reached the stem apex. The evidence showed that a similar increase in stem growth occurred whether GA was applied to the first trifoliolate leaf or to the apex of the shoot, but considerably less elongation resulted when GA was applied to primary leaves. When leaves were treated with GA after remaining in darkness for extended times, no increase in stem elongation was observed; however, growth was promoted when the plants were returned to light. The time required for a sufficient amount of GA to be translocated from the leaf to increase stem growth is less than 1 hour. The maximum growth response was found when the treated leaf was left on the plant for 3 or more hours. A study of GA movement in two-branched plants was made. The untreated branch showed no growth response when GA was applied to the apex of the other branch, even if the dose of GA was 20 × greater than a saturating dose. Similar results were observed when GA was applied to the first trifoliolate leaf. Considerable GA moved from a mature leaf to the opposite shoot if this untreated branch had been defoliated. The pattern of GA movement to the opposite shoot was dependent on the position of the treated leaf on the shoot. It is concluded that the movement of applied GA is related to carbohydrate transport within the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号