首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although ambient temperature has diverse effects on disease dynamics, few studies have examined how temperature alters pathogen transmission by changing host physiology or behaviour. Here, we test whether reducing ambient temperature alters host foraging, pathology and the potential for fomite transmission of the bacterial pathogen Mycoplasma gallisepticum (MG), which causes seasonal outbreaks of severe conjunctivitis in house finches (Haemorhous mexicanus). We housed finches at temperatures within or below the thermoneutral zone to manipulate food intake by altering energetic requirements of thermoregulation. We predicted that pathogen deposition on bird feeders would increase with temperature-driven increases in food intake and with conjunctival pathology. As expected, housing birds below the thermoneutral zone increased food consumption. Despite this difference, pathogen deposition on feeders did not vary across temperature treatments. However, pathogen deposition increased with conjunctival pathology, independently of temperature and pathogen load, suggesting that MG could enhance its transmission by increasing virulence. Our results suggest that in this system, host physiological responses are more important for transmission potential than temperature-dependent alterations in feeding. Understanding such behavioural and physiological contributions to disease transmission is critical to linking individual responses to climate with population-level disease dynamics.  相似文献   

2.
3.
While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.  相似文献   

4.
The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non-classical lifespan effects.  相似文献   

5.
Understanding the factors that constrain and drive changes in food chain length represents an open challenge in ecology. Although several explanatory hypotheses have been proposed, no synthesis has yet been achieved. The role of body size has been well-studied in recent years because the hierarchy of trophic connections – in which large animals consume small ones – suggests a positive relationship between trophic position and body size. Empirical evidence, however, supports the existence of both positive and negative associations, and some studies have even reported no significant relationship between trophic position and body size. These results suggest that the relationship may be non-monotonic and driven by several interacting mechanisms. Here, we analyze the effects of energetic limitations and structural constraints on species' trophic positions. We show that the trophic position of small-bodied animals can be limited by their ability to consume large prey, whereas energetic limitations strongly constrain trophic positions for large-bodied animals, with the intensity of this constraint depending on the amount of energy available to top predators. These differences in limiting mechanisms can account for the observed variability in the association between the trophic position of top predators and size. Furthermore, our derivation makes use of the Metabolic theory of ecology and predicts a negative relationship between temperature and the maximum achievable food chain length, providing a mechanistic foundation for the observed reductions in food chain length with temperature.  相似文献   

6.
Understanding how diversity interacts with energy supply is of broad ecological interest. Most studies to date have investigated patterns within trophic levels, reflecting a lack of food webs which include information on energy flow. We added parasites to a published marine energy‐flow food web, to explore whether parasite diversity is correlated with energy flow to host taxa. Parasite diversity was high with 36 parasite taxa affecting 40 of the 51 animal taxa. Adding parasites increased the number of trophic links per species, trophic link strength, connectance, and food chain lengths. There was evidence of an asymptotic relationship between energy flowing through a food chain and parasite diversity, although there were clear outliers. High parasite diversity was associated with host taxa which were highly connected within the food web. This suggests that energy flow through a taxon may favour parasite diversity, up to a maximal value. The evolutionary and energetic basis for that limitation is of key interest in understanding the basis for parasite diversity in natural food webs and thus their role in food web dynamics.  相似文献   

7.
S. M. PERCIVAL  P. R. EVANS 《Ibis》1997,139(1):121-128
Brent Geese Branta bernicla wintering at Lindisfarne, northeastern England, fed almost exclusively on intertidal habitats. Their main food supply was two species of Eelgrass Zostera noltii and Zostera angustifolia. Although abundant when the birds arrived in September, this Zostera was rapidly depleted during the period October-December. Brent Goose food intake rate declined with the decreasing food supply, and the birds responded by extending the time that they spent feeding. When it was no longer possible to extend the time spent feeding (i.e. they were feeding for all of the time that the food supply was available to them), they moved away from the site. The geese fed extensively at night in order to achieve their daily feeding requirements, especially later in the season. Conversion of daily food intake to energetic intake suggested that there may have been an energetic trigger acting: the geese left the site when they were unable to satisfy their basic energy demand. No evidence was found for direct interference competition between Brent Geese and the other grazer in the system, Wigeon Anas penelope: the two species showed no spatial segregation in their feeding areas at the scale investigated nor any temporal avoidance of each other.  相似文献   

8.
1. Trade-offs are often predicted to occur between energetically costly activities, such as somatic growth and eliciting immune responses to parasites. Although parasitism frequently reduces growth via lowered consumption, it remains unclear if the energetic demands of generating immune responses also affect the digestive physiological processes necessary for growth. Moreover, as local environmental conditions affect energetic investment towards growth and immune responses, the extent of any digestive–immune response trade-offs may vary among populations and not be fixed at the species-level. 2. To test these ideas, melanisation – a general innate immune response – was first induced in damselfly larvae (Enallagma vesperum) from two populations. The study then quantified growth and consumption rates, assimilation and production efficiencies, and daily metabolic rates to determine if digestive–immune response trade-offs were present and, if so, whether they differed between populations. 3. There was no evidence of any trade-offs between immune responses and digestive physiology components in either population. However, the results did show that populations differentially allocated energy towards different digestive physiology components after an immune response was elicited: one population increased their relative consumption and daily metabolic rates, while the other population had lower assimilation efficiencies and consumption rates. 4. Although researchers lack a mechanistic understanding of the observed population-level differences, these results suggest that accounting for population-level variation in digestive physiology and immune responses is critical to inferences about how immunological defences to parasitism may affect the ability for organisms to both acquire and utilise resources.  相似文献   

9.
10.
Synopsis Although swimming is energetically costly, a number of studies on salmonid species have demonstrated increased growth rates in fishes forced to swim for prolonged periods at moderate speeds (typically 1–2 body lengths per sec). This suggests that additional energetic costs of swimming are more than met by alternative compensatory gains. The mechanisms underlying such effects are not fully understood. In this paper, we describe an experiment designed to examine one possible mechanism, namely a swimming-induced inhibition of aggression, with consequent beneficial effects on growth. The study used Arctic charr,Salvelinus alpinus, a species for which a positive relationship between exercise and growth has been clearly established. Using direct behavioural observations on small groups, we demonstrate that individuals displaying high levels of aggressive behaviour are able to monopolise access to food and that enforced swimming at a moderate speed (1 body length per sec) reduces the incidence of aggression although not the degree of monopolisation of food shown by aggressive individuals. These results suggest that the enhanced growth rates accompanying enforced swimming may reflect lower energetic costs of reduced aggressive activity rather than improved access to food by subordinates.  相似文献   

11.
During evolution, the ability to overeat and store the extra energy as glycogen and lipids in specialized tissues must have conferred a reproductive advantage by releasing animals from the need to eat constantly, enabling them to engage in behaviors that improved reproductive success. Mechanisms that inhibited ingestive behavior might have been most adaptive when they caused individuals to stop foraging, hoarding and eating in order to find and court potential mates. Conversely, the ability to abstain from reproductive activities to engage in foraging and eating was probably critical for individual survival during severe energetic challenges because reproductive processes are energetically costly and can be delayed until the energetic conditions improve. The mechanisms that control ingestive behavior most likely evolved under conditions in which both food and mates were available, and thus, our understanding might be limited by our narrow focus on food intake in animals isolated from potential mates, and reproductive behaviors in the absence of food. Our understanding of obesity and eating disorders will be enriched by the study of the choice between ingestive and reproductive behaviors and by a renewed attention to "reproductive" hormones such as gonadal steroids and hypothalamic releasing hormones. Furthermore, leptin and reproductive hormones have both organizational and activational effects on the energy balancing system including those mechanisms that control appetite, body fat content and body fat distribution. Understanding these organizational and activational effects on body fat distribution might lead to a better understanding of sex differences in the propensity to develop obesity, type II diabetes and eating disorders.  相似文献   

12.
It is assumed that there is a trade-off between the costs allocated to mounting an immune defence and those allocated to costly functions such as breeding and moulting. The physiological basis for this is that mounting an immune response to pathogen challenge has energetic and/or nutrient costs which may interfere with metabolic processes of the challenged individual. If the energetic costs of mounting an immune response are not too high, animals may face such costs by increasing their acquisition of food energy, suggesting that limited nutrients may be responsible for the costs of immune defence. We assessed the energetic and developmental costs of mounting an immune response in an experiment in captivity with first-year greenfinches (Carduelis chloris) challenged with sheep red blood cells and Brucella abortus. Antibody production against both antigens increased the daily energy expenditure (4.7%) of immune-challenged birds relative to control birds, although the difference was non-significant. We estimated that the maximum effect size supported by the data would be 9.9% higher in immune-challenged birds relative to control birds. We plucked the two outermost rectrices of each bird to assess the effects of the immune challenge on growth of the regenerated feathers. The immune challenge had no significant effect on the length of the regenerated rectrices. However, these feathers were more asymmetric in length in immune-challenged birds than in control birds. Although first-year male greenfinches paid a relatively low energetic cost when mounting an immune response, we suggest that immune-challenged individuals may have paid some costs over the long term based on the increased fluctuating asymmetry in the developing feathers.  相似文献   

13.
We investigated physiological constraints on calling behaviour in the túgara frog, Physalaemus pustulosus. First, we examined the hypothesis that energetic factors limit calling. Time spent in chorus activity is the best predictor of male mating success (Ryan, 1985). Manipulation of food availability demonstrated that males given supplemental food were more likely to call than males without supplemental food. Males without supplemental food were less likely to call even though their lipid reserves were only slightly less than males given the supplemental food, suggesting that part of the increased energy obtained from the supplemental food may have been channelled into calling to attract females. Secondly, we examined the role of steroid hormones in switching between reproductive and non-reproductive behaviours. Calling males had higher levels of plasma testosterone than silent males. Experimental elevation of corticosterone decreased testosterone levels and the likelihood of calling, thus linking both of these steroid hormones to calling behaviour. Males who responded to supplemental food by increasing calling had higher levels of testosterone than those without supplemental food, but there was no difference in plasma corticosterone levels. Overall, the results suggest that energetic factors affect calling behaviour and that one potential mechanism for this affect is through plasma testosterone levels. Corticosterone can decrease calling behaviour, however, corticosterone does not appear to mediate the effect of energetic factors on calling behaviour. These data are consistent with the hypothesis that energetic factors ultimately constrain sexual selection for calling behaviour.  相似文献   

14.
SYNOPSIS The time is ripe for protozoan ecologists to begin the general evaluation of the role of food quality in the energy transformations and materials flow in food webs involving protozoa and other small organisms. Current evidence suggests that major pathways of energy flow at any particular time depend upon the matches between prey species and consumers. There are 2 components to food quality related (informational) energy flow: (a) the information present in the molecular constitution of the prey; and (b) the ability of the protozoa to recognize and use it. If the evidence obtained from trophodynamic studies of 2 marine ciliates, Uronema marinum Dujardin and Euplotes vannus Müller indicates a generalized ability of protozoa to regulate catabolic reactions to points which optimize energetic gains from their food, then it may be one of the keys to the evolutionary successes of the group.  相似文献   

15.
Representative energy data for a human population can be produced by combining randomly sampled time allocation observations with activity-specific energy expenditure measurements. Research to produce representative energy data for adults of a population of Machiguenga Indians has recently been conducted in lowland, southeastern Peru. Marked contrast was found between the sexes for average married adults in energy expended on an average day. Men spent about 3,200 kcals and women, about 1,925; ratio: 1.66 to 1. In general, men tended to work at somewhat more energetic activities and for longer periods than did women. In addition to sex-role-related task differences were contrasts in uses of technological items and in respective work settings. These representative behavior data permit direct estimates of population-level energy requirements for average days, seasons, or for 1 year.  相似文献   

16.
Central-place foraging seabirds alter the availability of their prey around colonies, forming a "halo" of reduced prey access that ultimately constrains population size. This has been indicated indirectly by an inverse correlation between colony size and reproductive success, numbers of conspecifics at other colonies within foraging range, foraging effort (i.e. trip duration), diet quality and colony growth rate. Although ultimately mediated by density dependence relative to food through intraspecific exploitative or interference competition, the proximate mechanism involved has yet to be elucidated. Herein, we show that Adélie penguin Pygoscelis adeliae colony size positively correlates to foraging trip duration and metabolic rate, that the metabolic rate while foraging may be approaching an energetic ceiling for birds at the largest colonies, and that total energy expended increases with trip duration although uncompensated by increased mass gain. We propose that a competition-induced reduction in prey availability results in higher energy expenditure for birds foraging in the halo around large colonies, and that to escape the halo a bird must increase its foraging distance. Ultimately, the total energetic cost of a trip determines the maximum successful trip distance, as on longer trips food acquired is used more for self maintenance than for chick provisioning. When the net cost of foraging trips becomes too high, with chicks receiving insufficient food, chick survival suffers and subsequent colony growth is limited. Though the existence of energetic studies of the same species at multiple colonies is rare, because foraging metabolic rate increases with colony size in at least two other seabird species, we suggest that an energetic constraint to colony size may generally apply to other seabirds.  相似文献   

17.
Populations of marine benthic organisms occupy habitats witha range of physical and biological characteristics. In the intertidalzone, energetic costs increase with temperature and aerial exposure,and prey intake increases with immersion time, generating sizegradients with small individuals often found at upper limitsof distribution. Wave action can have similar effects, limitingfeeding time or success, although certain species benefit fromwave dislodgment of their prey; this also results in gradientsof size and morphology. The difference between energy intakeand metabolic (and/or behavioral) costs can be used to determinean energetic optimal size for individuals in such populations.Comparisons of the energetic optimal size to the maximum predictedsize based on mechanical constraints, and the ensuing mortalityschedule, provides a mechanism to study and explain organismsize gradients in intertidal and subtidal habitats. For specieswhere the energetic optimal size is well below the maximum sizethat could persist under a certain set of wave/flow conditions,it is probable that energetic constraints dominate. When theopposite is true, populations of small individuals can dominatehabitats with strong dislodgment or damage probability. Whenthe maximum size of individuals is far below either energeticoptima or mechanical limits, other sources of mortality (e.g.,predation) may favor energy allocation to early reproductionrather than to continued growth. Predictions based on optimalsize models have been tested for a variety of intertidal andsubtidal invertebrates including sea anemones, corals, and octocorals.This paper provides a review of the optimal size concept, andemploys a combination of the optimal energetic size model andlife history modeling approach to explore energy allocationto growth or reproduction as the optimal size is approached.  相似文献   

18.
Stable carbon and nitrogen isotope ratio analyses were used to characterize the primary energy sources and trophic positions of 16 common Lake Superior wave zone invertebrate species. Isotope data from six tributary species that were taxonomically and ecologically matched with common wave zone species revealed broad energetic separation between these similarly structured benthic food webs. Previously published stable isotope data for Lake Superior wetland and pelagic food webs were used to assess the relative importance of inter-habitat energy flow within the Lake Superior ecosystem. The results of these comparisons indicate that the Lake Superior wave zone is energetically distinct from its tributaries, wetlands, and to a lesser extent from its vast pelagic realm. This information and approach should prove useful in future studies on the bioenergetics of inter-zonal migrants and other species that forage in multiple habitats within the lake and also in revealing energetic connections among terrestrial, riverine, littoral, and pelagic food webs in the coastal ecosystems of Lake Superior.  相似文献   

19.
While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations.  相似文献   

20.
Detritus is a central feature in marine, freshwater, and terrestrial ecosystems. Despite the ubiquity of detritus, ecologists have largely ignored its role in influencing food web structure. We used a meta‐analytic approach to ask three questions about how detritus affects food web structure in a wide variety of ecosystems. First, what is the effect strength of detritus on primary producers, detritivores, herbivores, and predators? Second, what functional role does detritus serve for consumers (energetic, habitat, or both)? Third, how does the effect of detritus on consumers vary between aquatic and terrestrial ecosystems? We found that detritus has strong positive effects on primary producers and consumers in a wide range of ecosystems types. Detritus has a positive direct effect on detritivores by providing both an energetic resource and habitat (refuge from predators). Detritus has equally strong positive effects on herbivores and predators, driven by a positive direct effect of habitat. Detritus has positive effects on consumers in both aquatic and terrestrial ecosystems with 1.7 times stronger effects in terrestrial ecosystems. These results suggest that detritus has strong effects on food‐web structure in a variety of ecosystem types. Even the portion of the food web that is linked most strongly to living plant tissue as its primary energy source is strongly positively affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号