首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently we have demonstrated that extracellular ATP acts as an excitatory neurotransmitter and enhances cell death in the presence of ferrous ions. By using a newly developed cis-parinaric acid fluorescence technique, we demonstrated that ATP, in a dose dependent manner, enhanced the increased membrane lipid peroxidation in PC12 cells when cells were incubated with micromolar FeCl2/DTP. P2 purinoceptor agonists, α,β-methylene ATP and 2-methylthio-ATP, induced PC12 cell lipid peroxidation, but to a lesser extent than ATP. ATP-induced Ca2+ influx via P2 purinoceptor activation significantly increased the intracellular Ca2+ concentration, which may have triggered a free radical generating cascade(s), and led to membrane lipid peroxidation and cell death. Since oxidative stress has been implicated in certain neurodegenerative diseases such as aging, extracellular ATP may contribute to neuronal cell death by an oxidative mechanism involving lipid peroxidation.  相似文献   

2.
The neural cell adhesion molecules (N-CAMs) play an important role in mediating cell–cell interactions in the nervous system. Different isoforms of these membrane proteins are involved in the formation of the neuronal network and in the dynamic phases of neuronal plasticity.

We studied the early stages of the pseudo neuronal differentiation of PC12 cells induced by a class of small acidic peptides capable of modulating gene expression in these cells.

The data presented here indicate that peptides with specific sequences induce an increase in N-CAM mRNA expression and protein translocation to the plasma membrane to a comparable degree as NGF.  相似文献   


3.
Different types of physiological‐mechanical stress, such as shear stress in vascular endothelial cells or hydrostatic pressure in chondrocytes are well known as regulators of cell function. In this study, the effects of vibration, a type of non‐physiological mechanical stimulation, on differentiation of rat pheochromocytoma (PC12) cells are reported. A nano‐vibration system was designed to produce nanometer‐scale vibration. The frequency and amplitude of the nano‐vibrations were monitored by a capacitance displacement sensor connected to an oscilloscope. When PC12 cells exposed to nerve growth factor were subjected to vibration at 10 kHz, differentiation and elongation of their neurites were promoted earlier in the culture. Vibration promoted differentiation of PC12 cells. This approach could therefore also be promising for determining of the effects of the physical environment on cell differentiation. Biotechnol. Bioeng. 2011; 108:592–599. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
The duration of intracellular signaling is thought to be a critical component in effecting specific biological responses. This paradigm is demonstrated by growth factor activation of the extracellular signal-regulated kinase (ERK) signaling cascade in the rat pheochromocytoma cell line (PC12 cells). In this model, sustained ERK activation induced by nerve growth factor (NGF) results in differentiation, whereas transient ERK activation induced by epidermal growth factor (EGF) results in proliferation in these cells. Recently, the immediate early gene product c-fos has been proposed to be a sensor for ERK signaling duration in fibroblasts. In this study, we ask whether this is true for NGF and EGF stimulation of PC12 cells. We show that NGF, but not EGF, can regulate both c-fos stability and activation in an ERK-dependent manner in PC12 cells. This is achieved through ERK-dependent phosphorylation of c-fos. Interestingly, distinct sites regulate enhanced stability and transactivation of c-fos. Phosphorylation of Thr325 and Thr331 are required for maximal NGF-dependent transactivation of c-fos. In addition, a consensus ERK binding site (DEF domain) is also required for c-fos transactivation. However, stability is controlled by ERK-dependent phosphorylation of Ser374, while phosphorylation of Ser362 can induce conformational changes in protein structure. We also provide evidence that sustained ERK activation is required for proper post-translational regulation of c-fos following NGF treatment of PC12 cells. Because these ERK-dependent phosphorylations are required for proper c-fos function, and occur sequentially, we propose that c-fos is a sensor for ERK signaling duration in the neuronal-like cell line PC12.  相似文献   

5.
6.
To determine the role of Dp71 in neuronal cells, we generated PC12 cell lines in which Dp71 protein levels were controlled by stable transfection with either antisense or sense constructs. Cells expressing the antisense Dp71 RNA (antisense-Dp71 cells) contained reduced amounts of the two endogenous Dp71 isoforms. Antisense-Dp71 cells exhibited a marked suppression of neurite outgrowth upon the induction with NGF or dibutyryl cyclic AMP. Early responses to NGF-induced neuronal differentiation, such as the cessation of cell division and the activation of ERK1/2 proteins, were normal in the antisense-Dp71 cells. On contrary, the induction of MAP2, a late differentiation marker, was disturbed in these cells. Additionally, the deficiency of Dp71 correlated with an altered expression of the dystrophin-associated protein complex (DAPC) members alpha and beta dystrobrevins. Our results indicate that normal expression of Dp71 is essential for neurite outgrowth in PC12 cells and constitute the first direct evidence implicating Dp71 in a neuronal function.  相似文献   

7.
We report here that a microbial extracellular glycolipid,mannosylerythritol lipid (MEL), induces the outgrowth ofneurites from and enhances the activity of acetylcholinesterase(AChE) in PC12 pheochromocytoma cells. Furthermore, treatment ofPC12 cells with MEL increased levels of galactosylceramide(Gal1-1Cer; GalCer). Exposure of PC12 cells to exogenous GalCer caused the dose-dependent outgrowth ofneurites. By contrast, treatment of PC12 cells with nerve growthfactor (NGF) did not increase the level of GalCer in the cells. The neurite-related morphological changes induced by GalCerdifferend from those induced by NGF, indicating differencesbetween the signal transduction pathways triggered by NGF and by GalCer.Both authors contributed equally to this work.  相似文献   

8.
雷公藤内酯醇对 PC12细胞增殖的抑制作用及机制初探   总被引:3,自引:0,他引:3  
目的:研究雷公藤内酯醇(triptolide)对PC12细胞增殖的影响及其作用的机制,为其在临床上治疗肿瘤提供实验依据.方法:利用形态学观察、四甲基偶氮唑(MTT)比色分析、流式细胞术和逆转录聚合酶链式反应(RTPCR)检测雷公藤内酯醇对体外培养的嗜铬细胞瘤细胞(PC12 cell)增殖的影响.结果:雷公藤内酯醇(5×103、25×103 g/L)与PC12细胞作用24 h、48 h或72 h均可抑制PC12细胞的增殖,并且这种抑制作用可随着雷公藤内酯醇浓度的增加而增强.但低浓度的雷公藤内酯醇(1×103g/L)对PC12细胞增殖无明显影响.5×103 g/L雷公藤内酯醇与PC12细胞作用24 h后,可使细胞周期中的G0~G1期比例增加,S期比例下降.PC12细胞与雷公藤内酯醇作用后,细胞的翻译延伸因子2A3-2的表达减弱,而且作用48 h与作用24 h相比,2A3-2的表达减弱更为明显.结论:雷公藤内酯醇可抑制PC12细胞的增殖,该抑制可能是通过改变2A3-2基因的表达从而阻止细胞的G0~G1期向S期过渡来实现的.  相似文献   

9.
We report here the possible involvement of a new protease in neurite initiation by PC12h cells. Addition of a leupeptin analogue (Ac-Leu-Leu-Nle-al, ALLNal) to PC12h cells on culture plates coated with collagen type I caused de novo neurite outgrowth. Other protease inhibitors (Ac-Leu-Leu-Met-al, leupeptin, E64c, E64d, soybean trypsin inhibitor, hirudin, aprotinin, diisofluorophosphate, 6-aminocapric acid, and pepstatin A) could not mimic this neurite-initiating action. ALLNal induced the initiation of one or two long neurites from the cell body, and increased the cellular level of acetylcholinesterase to an extent similar to nerve growth factor (NGF). However, ALLNal-induced neuritogenesis is different from that induced by NGF, in which many neurites are induced from a single cell body. In addition, in contrast to neurons induced by NGF, which survive for a long time, ALLNal-induced differentiation was transient, and after 48 h percentage of cells bearing neurites started to decrease. After about 120 h exposure to ALLNal, neurites had mostly disappeared and the acetylcholinesterase activity level was not as great as that produced by NGF. These results provide evidence that ALLNal and NGF elicit neurite initiation by different mechanisms, and suggest the existence of a regulatory system of neuronal differentiation through specific protease-protease inhibitor interaction.  相似文献   

10.
Micropatterning of biological cues is important for the guided formation of neuronal outgrowth and neuronal differentiation. Nerve growth factor (NGF) was micropatterned in a three-dimensional collagen sponges by using micropatterned ice lines that were composed of collagen and NGF. The micropatterned ice lines were prepared by a dispersing machine. PC12 cells were cultured in the NGF-micropatterned collagen sponges and showed micropatterned neurite outgrowth. The neurite outgrowth followed the micropattern of NGF with more neurite outgrowth in the collagen/NGF lines than in the regions between the collagen/NGF lines. The micropattern of the NGF and the neurite network of the PC12 cells can be manipulated by controlling the micropattern of the NGF. The three-dimensional porous scaffolds prepared by this method will have a potential application for the regeneration and repair of the nervous system.  相似文献   

11.
Semaphorins provide crucial attractive and repulsive cues involved in axon guidance during neural development. Out of them, Semaphorin 4D (Sema4D) is enriched in the nervous and immune tissues, and acts as proliferative and survival factors of peripheral lymphocytes in the immune system, but is poorly understood in the nervous system. By using PC12 cells which are well known to differentiate into neural cells in response to nerve growth factor (NGF), we found that soluble forms of Sema4D had neurotrophic effects which were inhibited by neutralizing antibodies to Sema4D. Sema4D strikingly potentiated neurite outgrowth in the presence of 50 ng/ml NGF and increased sensitivity to NGF. Cells responded to very low concentrations of NGF in the presence of 1 nM Sema4D. Activation of following signal proteins, protein kinase C (PKC), L-type of voltage-dependent Ca(2+) channel, and phosphatidylinositol (PI) 3-kinase mediated neurotrophic neurite-outgrowth action of Sema4D. These findings suggest a new function of Sema4D as a neurotrophic signal in PC12 cells.  相似文献   

12.
The stress response of PC12 cells was characterized by evaluating the production of heat shock proteins of the 70 kDa (Hsp70), 60 kDa (Hsp60) and 90 kDa (Hsp90) families by western blot analysis. Induction of Hsp synthesis was elicited by brief exposure to elevated temperatures or by addition of ethanol to the cultures. Normal PC12 cells responded to stress with rapid up-regulation of Hsp70 and Hsp60 production. However, fully differentiated PC12 cells (induced by nerve growth factor, NGF) failed to produce Hsp70 or Hsp60 in response to heat or ethanol treatment. The disappearance of the heat shock response of the cells was directly related to the extent of neuronal differentiation. The cellular levels of the constitutive proteins, Hsc70 and Hsp90, were not altered by differentiation of the cells. Production of Hsps was restored in the differentiated cells by removal of NGF which coincided with the loss of neurite expression and retraction of processes.  相似文献   

13.
A wide variety of mammalian cell types is used in gene transfection studies. Establishing transfection methods that enable highly efficient DNA uptake has become increasingly important. PC12 is an established rat pheochromocytoma cell line, which responds to exposure to NGF with cessation of growth, expression of cytoplasmic processes, and differentiation into cells resembling sympathetic neurons. Although PC12 cells represent an important model system to study a variety of neuronal functions, they proved relatively difficult to transfect. We have compared the efficiency of three different chemical transfection reagents (Lipofectamine 2000, Lipofectamine LTX and TransIT-LT1) and of two electroporation systems (Neon and Gene Pulser Xcell) in transiently transfecting undifferentiated PC12 cells. By comparing efficiencies from replicate experiments we proved electroporation (in particular Neon) to be the method of choice. By optimizing different parameters (voltage, pulse width and number of pulses) we reached high efficiency of transfection (90 %) and viability (99 %). We also demonstrated that, upon electroporation, cells are not altered by the transfection and maintain their ability to differentiate.  相似文献   

14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are closely related members of the secretin superfamily of neuropeptides expressed in both the brain and peripheral nervous system, and they exhibit neurotrophic and neurodevelopmental effects in vivo. Like the index member of the Trk receptor ligand family, nerve growth factor (NGF), PACAP promotes the differentiation of PC12 cells, a well-established cell culture model, to investigate neuronal differentiation, survival and function. Stimulation of catecholamine secretion and enhanced neuropeptide biosynthesis are effects exerted by PACAP at the adrenomedullary synapse in vivo and on PC12 cells in vitro through stimulation of the specific PAC1 receptor. Induction of neuritogenesis, growth arrest, and promotion of cell survival are effects of PACAP that occur in developing cerebellar, hippocampal and cortical neurons, as well as in the more tractable PC12 cell model. Study of the mechanisms through which PACAP exerts its various effects on cell growth, morphology, gene expression and survival, i.e. its actions as a neurotrophin, in PC12 cells is the subject of this review. The study of neurotrophic signalling by PACAP in PC12 cells reveals that multiple independent pathways are coordinated in the PACAP response, some activated by classical and some by novel or combinatorial signalling mechanisms.  相似文献   

15.
We have investigated mechanisms of nicotine-induced phosphorylation of extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and cAMP response element binding protein (CREB) in PC12h cells. Nicotine transiently induced ERK phosphorylation at more than 1 microM. The maximal level of nicotine-induced ERK phosphorylation was lower than that of the membrane depolarization induced and, to a great extent, the nerve growth factor (NGF)-induced ERK phosphorylation. Nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitors had no significant effect on nicotine-induced ERK phosphorylation. L-Type voltage-sensitive calcium channel antagonists inhibited nicotine-induced ERK phosphorylation. Calcium imaging experiments showed that alpha7-containing nAChR subtypes were functional at 1 microM of nicotine in the nicotine-induced calcium influx, and non-alpha7 nAChRs were prominent in the Ca(2+) influx at 50 microM of nicotine. An expression of dominant inhibitory Ras inhibited nicotine-induced ERK phosphorylation. A calmodulin antagonist, a CaM kinase inhibitor, a MAP kinase kinase inhibitor inhibited nicotine-induced ERK and CREB phosphorylation. The time course of the phosphorylation of CREB induced by nicotine was similar to that of ERK induced by nicotine. These results suggest that non-alpha7 nAChRs are involved in nicotine-induced ERK phosphorylation through CaM kinase and the Ras-MAP kinase cascade and most of the nicotine-induced CREB phosphorylation is mediated by the ERK phosphorylation in PC12h cells.  相似文献   

16.
Endogenous opioid peptides, found in the central and peripheral nervous systems, perform neuromodulatory roles, and display a wide range of functional and pharmacological properties in vitro and in vivo. In this study, we investigated the effects of prodynorphin gene products on intracellular signaling events and cell survival in rat pheochromocytoma PC12 cells. Leumorphin, but not other prodynorphin gene products including dynorphin A, beta-neoendorphin and rimorphin (dynorphin B), increased cell viability in PC12 cells. The cytoprotective effect of leumorphin was dependent on the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, but was insensitive to both naloxone, a general antagonist of the opioid receptor, and nor-binaltorphimine, a specific antagonist of the kappa opioid receptor. Moreover, a competition-binding assay clearly revealed that leumorphin had another binding site(s) in addition to that for the kappa opioid receptor. Interestingly, leumorphin induced activation of the epidermal growth factor receptor via a Src-dependent mechanism, which was proved to be responsible for the increased survival response. Flow cytometric and microscopic analysis showed that leumorphin rescued cells from serum deprivation-induced apoptosis. Collectively, we suggest that leumorphin prevents apoptosis via epidermal growth factor receptor-mediated activation of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, which occur independent of the kappa opioid receptor.  相似文献   

17.
Cyclooxygenase-1 (COX-1) behaves as a delayed response gene in rat pheochromocytoma (PC12) cells exposed to nerve growth factor (NGF). To investigate the possible targets for COX-1 generated prostanoids in the early stages of neuronal differentiation, we have examined the expression of prostanoid receptors by PC12 cells using functional assays. Prostanoid receptor-specific agonists failed to activate adenylyl cyclase in undifferentiated and NGF-treated PC12 cells; neither did they stimulate phospholipase C activity. EP3 receptor agonists and PGF were the only active ligands, able to inhibit forskolin-stimulated adenylyl cyclase activity. PC12 cells expressed EP3 and FP receptor mRNA, but only the responses to EP3 receptor agonists were inhibited by the EP3 receptor antagonist ONO-AE3-240. The functional role of NGF-stimulated COX-1 remains to be determined since we found no strong evidence of a role for EP3 receptors in the morphological changes induced by NGF during the early stages of differentiation of PC12 cells.  相似文献   

18.
Rat pheochromocytoma PC12 cells die when cultured in serum-free medium. Neurotrophic factors can rescue PC12 cells from cell death, and induce neuronal differentiation. To further investigation the relationship among cell death, survival, and differentiation, the bcl-2 cDNA, which is known to prevent apoptosis in various types of cells, was transfected into PC12 cells. Six monoclonal bcl-2-transfected cell lines were isolated and confirmed to express mRNA and protein product of bcl-2. The wild-type and bcl-2-transfected PC12 cells were kept to adhere to collagen-coated dishes at the inintiation of serum-free experiments to avoid cellular damage due to detachment of the cells by triturtion. Even under the conditions, the control PC12 cells mostly died within 24 h, when cultured in serum-free medium whereas those expressing Bcl-2 survived even for 7 days in serum-free medium. Moreover, outgrowth of long processes in thebcl-2-transfected cells was only observed under the condition to keep the cells attached to the dishes in serum-free medium without any additive neurotrophic or growth factors. Neurofilament medium protein, which is a neuron-specific cytoskeletal component, was also expressed in the differentited cells, suggesting that the long processes in bcl-2-transfected PC12 cells are neurites. However, neuronal differentiation of PC12 cells expressing Bcl-2 was not observed when cultured in serum-containing medium. Accordingly, survival of PC12 cells expressing Bcl-2 under the condition which cells usually die may be accompanied with neuronal differentiation. 1994 John Wiley & Sons, Inc.  相似文献   

19.
Ubiquitin and ubiquitin-protein conjugates in PC12h cells were detected with in vitro [125I]ubiquitination, and quantified by immunoblotting. These levels were altered by nerve growth factor (NGF), which promotes neuronal differentiation. (i) Levels of high molecular weight (HMW) ubiquitin-protein conjugates ranging from 40 to 1,000kDa were increased by 2 days of NGF treatment, and remained high up to 10 days of NGF treatment. (ii) Ubiquitin and a 23-kDa conjugate tended to be decreased from days 2 to 10 of NGF treatment. 10-Day culture with 10 nM staurosporine, an protein kinase inhibitor, that blocks NGF-induced neurite outgrowth suppressed the NGF-induced increases in levels of HMW conjugates. Cyclic AMP and forskolin, both of which promote neurite outgrowth, mimicked the NGF-induced changes in ubiquitin and HMW conjugates, but phorbol ester and epidermal growth factor had little effect. These findings suggest that changes in ubiquitin-protein conjugates are closely coupled with neuronal differentiation.  相似文献   

20.
Muscarinic acetylcholine receptors (mAChRs) activate many downstream signaling pathways, some of which can lead to mitogen-activated protein kinase (MAPK) phosphorylation and activation. MAPKs play roles in regulating cell growth, differentiation, and synaptic plasticity. Here, the activation of MAPK was examined in PC12 cells endogenously expressing mAChRs. Western blot analysis using a phosphospecific MAPK antibody revealed a dose-dependent and atropine-sensitive increase in MAPK phosphorylation in cells stimulated with carbachol (CCh). The maximal response occurred after 5 min and was rapidly reduced to baseline. To investigate the receptors responsible for CCh activation of MAPK in PC12 cells, the mAChR subtypes present were determined using RT-PCR and immunoprecipitation. RT-PCR was used to amplify fragments of the appropriate sizes for m1, m4, and m5, and the identities of the bands were confirmed with restriction digests. Immunoprecipitation using subtype-specific antibodies showed that approximately 95% of the expressed receptors were m4, whereas the remaining approximately 5% were m1 and m5. A highly specific m1 toxin completely blocked MAPK phosphorylation in response to CCh stimulation. The mAChR-induced MAPK activation was abolished by protein kinase C down-regulation and partially inhibited by pertussis toxin. Although m1 represents a small proportion of the total mAChR population, pharmacological evidence suggests that m1 is responsible for MAPK activation in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号