首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The T cell composition of the thymus of sublethal fission neutron-irradiated CBA/H mice was analyzed with cytofluorometry and immunohistology, using monoclonal antibodies directed to the cell surface antigens Thy-1, T-200, MT-4, Lyt-1, Lyt-2, and MEL-14. The results of this investigation show that whole body irradiation with 2.5 Gy fission neutrons results in a severe reduction and degeneration of the cortex, whereas the medulla is affected to a lesser extent. Irradiation selects, within 24 hr, for a population of dull Thy-1+, bright T-200+, bright Lyt-1+ cells localized in the medulla. Phenotype analysis of the regeneration of the thymus, which starts at about 5 days after irradiation, reveals the sequential appearance of: 1) "null" cells, i.e., lymphoblasts negative for all tested antigens, mainly in the subcapsular area but also in the medulla; 2) Thy-1+ "only" and T-200+ "only" cells in the subcapsular area; 3) Thy-1+, T-200+ cells; and 4) Thy-1+, T-200+, MT-4+, Lyt+ cells in the cortex. In addition, an increased MEL-14 expression is observed in correlation with the expression of Thy-1 and T-200 determinants during the regeneration of the thymus. From day 10 on up to at least 150 days after irradiation, no differences can be observed in the thymus of irradiated and age-matched sham-irradiated control mice, as measured by the expression and distribution of Thy-1, T-200, MT-4, Lyt-1, Lyt-2, and MEL-14 antigens. The observed sequence in phenotype shift in the regeneration of the thymus after irradiation is discussed in view of recently published data on the differentiation of the T cell system.  相似文献   

2.
It was established previously that committed precursors of T cells, which reside in bone marrow and spleen and lack T cell surface differentiation antigens, can be induced by thymopoietin and certain other agents to differentiate rapidly in vitro into T cells bearing typical surface antigens, including Thy-1 and TL (Komuro-Boyse assay). To relate this differentiative step observed in vitro to physiologic events in vivo, a system was devised to trace the migration of precursor cells to the thymus, and their maturation to T cells. Lethally irradiated mice of a TL- strain received spleen cells from TL+ hybrids i.v., and the TL+ population of the thymus was enumerated 13 to 20 days later. Donor TL+ cells first became detectable at 13 days and increased thereafter. Preliminary tests showed that cells capable of migrating to the thymus have a similar density to the cells that are inducible in the Komuro-Boyse assay, this being lower than that of mature of T cells. The thymus-repopulating properties of the donor spleen population were not affected by: 1) pre-treatment in vitro with thymus extract or thymopoietin, which initiates differentiation of T cells precursors, nor b) pre-treatment with anti Thy-1 serum plus complement, which eliminates differentiated T cells. But pre-treatment a) and b) applied in sequence markedly reduced the capacity of spleen cells to repopulate the thymus. These results can be interpreted as follows: induction of Thy-1-TL- precursor cells (pro-thymocyte) in vitro yields Thy-1+TL+ cells (early thymocytes) which have not yet lost their property of repopulating the thymus; therefore, thymus-repopulation was not depleted by treatment a) alone, which induced Thy-1 +TL+ cells, nor by treatment b) alone, which did not affect thymus-repopulation by Thy-1-TL- cells, although treatments a) plus b) did eliminate the newly induced Thy-1+TL+ cells and thus impaired repopulation of the thymus. We conclude that the cell which responds to thymopoietin in the Komuro-Boyse assay by expressing the T cell surface phenotype is the same cell (pro-thymocyte) that normally migrates in vivo from hemopoietic tissues to the thymus and is there induced by thymopoietin to express the phenotype of an early T cell.  相似文献   

3.
Two subpopulations of stem cells for T cell lineage   总被引:2,自引:0,他引:2  
An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells, the generation of donor-derived T cells being observed in two out of 14 recipients transferred with as few as 1.5 X 10(4) cells. The stem cell activity of spleen cells was estimated to be about 1% of that of bone marrow cells, and no activity was found in thymus cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. Spleen cells showed a markedly high level of activity 7 days after the reconstitution, followed by a decline, whereas the activity of bone marrow cells was very low on day 7 and increased crosswise. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells. Such patterns of compartmentalization of stem cells in the spleen and bone marrow of irradiated recipients completely conform to the general scheme of the relationship between restricted stem cells and less mature stem cells, including pluripotent stem cells, which became evident in other systems such as in the differentiation of spleen colony-forming cells or of stem cells for B cell lineage.  相似文献   

4.
A rat thymic epithelial cell line IT45-R1 has been previously described as secreting soluble molecules that in vitro chemoattract rat hemopoietic precursor cells. The development of such an in vitro migration assay was based on the ability of cells to migrate across polycarbonate filters in Boyden chambers. In the present paper, by using the same strategy, we studied murine bone marrow cells capable of migrating in vitro toward IT45-R1 conditioned medium. The responding cells were shown to represent a minor bone marrow subpopulation characterized by a low capacity to incorporate tritiated thymidine in vitro (less than 10% of control). Moreover, this cell subset was considerably impoverished with respect to granulocyte-macrophage CFU (less than 7% of control) and pluripotent hemopoietic stem cells (less than 12% of control). Potential generation of T cells of donor-type in the lymphoid organs of irradiated recipients was measured by using C57BL/Ka Thy-1.1 and Thy-1.2 congenic mice. Thy-1.1 irradiated mice were injected intrathymically or intravenously with the selectively migrated cell subset of Thy-1.2 donor-type bone marrow cells. The use of an i.v. transfer route allowed us to show that these cells possess thymus-homing and colonization abilities. In a time-course study after intrathymic cell transfer, these migrated cells were able to generate Thy-1.2+ donor-type thymocytes represented by all cortical and medullary cell subsets in a single wave of repopulation from day 20 to day 30 after transfer, with a peak around days 23 to 25. The degree of repopulation closely resembled that seen with unfractionated bone marrow cells in terms of absolute numbers of donor cells per thymus (82% of control, 22 x 10(6) Thy-1.2+ cells) as well as in percent donor cells per thymus (105% of control). Thy-1.2+ cells were also detected in the lymph nodes and the spleens of reconstituted recipient mice. Taken together, these results support the idea that the supernatant of the established thymic epithelium IT45-R1 induces the migration of a murine bone marrow subset that contains hemopoietic stem cells already committed to the lymphoid lineage (i.e., pre-T cells).  相似文献   

5.
The expression of antigen Thy-1 was studied in bone marrow cells of CBA line mice under the effect of thymus extracts. Extracts of the calf thymus--thymosine (fraction 5) and the preparation free of the Comsa factor were obtained by a combination of the Goldstein and Comsa extraction methods. The both extracts stimulate the expression of antigen Thy-1 in bone marrow cells. Incorporation of [14 C]sodium acetate into fragments containing antigen Thy-1 and absorbed by the column with anti-Thy-1-antibodies remains unchanged after stimulation. It is supposed that antigen Thy-1 ability to stimulate expression in bone marrow precursors of T-cells is not due to the synthesis of the antigen and is a property of one of the thymus factors with molecular mass of about 5000.  相似文献   

6.
Cellular events during the development of thymic lymphomas in young B10.BR mice given leukemogenic split-dose irradiation were studied by examining the differentiation of functional T lymphocyte precursors in the regenerating thymus. It was found that leukemogenic radiation treatment resulted in a sustained depression of the level of thymic cytotoxic T lymphocyte precursors (CTLp) and of mixed lymphocyte reactivity of thymus cells when assessed between 1 and 4 mo after irradiation, in spite of the fact that the total number of thymocytes was restored to the normal level within 2 mo and continued to increase thereafter. In vitro mixing studies of normal thymocytes with thymus cells from split-dose irradiated mice provided no evidence for active suppression as a mechanism for this depressed activity. The ability of bone marrow cells from split-dose irradiated mice to regenerate the thymus and to differentiate into functional CTLp was examined by use of supralethally irradiated Thy-1 congenic recipients. Reconstitution of supralethally irradiated B10.BR Thy-1.2 mice with normal bone marrow from B10.BR Thy-1.1 mice resulted in the complete repopulation of host-thymus with donor-derived cells when assessed at 4 wk after reconstitution. Lymphocytes from the regenerating thymus of these animals were shown to contain high levels of CTLp which were donor-derived. On the other hand, when the recipient mice were reconstituted with bone marrow cells from donor mice which had been split-dose irradiated 1 mo earlier, regeneration of the recipient thymus was severely depressed when assessed at 4 wk to 3 mo after reconstitution. Although variable but small numbers of donor-derived Thy-1+ cells were detected, CTL activity for alloantigen could not be induced in these donor-derived cells. The results suggest that T cell precursors derived from split-dose irradiated donor mice were unable to undergo active proliferation and differentiation into functional CTLp. The significance of these findings on radiation-induced thymic leukemogenesis is discussed.  相似文献   

7.
It is well recognized that the bone marrow contains cells that can repopulate a depleted thymus as well as cells that can be induced to express phenotypic markers characteristic of T cells. It is not known, however, to what extent thymocytopoiesis in the normal thymus relies on immigrant, bone marrow-derived cells, nor whether some T cell precursors have entered the bone marrow from the circulation. We used the parabiotic system to test whether thymocytopoiesis relies on progenitors intrinsic to the thymus or on cells that enter the organ from the circulation. In the same system, we have also investigated whether Thy-1- bone marrow lymphocytes that respond to phytohemagglutinin (PHA) by proliferation and Thy-1 expression are produced by myelogenous or hematogenous progenitors. Syngeneic CBA/HT6 and CBA/CaJ mice were joined in parabiotic union at 4-6 weeks of age. Cross circulation between the two partners was verified by the equilibration of Evans' blue dye injected into one partner and by the equilibration of PHA-responsive T cells in the spleen of the parabionts. Chromosome spreads were prepared from the PHA-stimulated T cell-depleted bone marrow and from spontaneously proliferating thymocytes as well as from thymocytes stimulated by PHA or Concanavalin A (Con A). The exchange of spleen colony-forming units (CFU-S) in the femoral marrow was assessed by karyotyping individual spleen colonies. Regardless of the length of parabiotic union, ranging from 4 to 20 weeks, Thy-1-, PHA-responsive bond marrow lymphocytes remained predominantly of the host type with only 3% being derived from the opposite partner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
T-cell precursors (pre-T cells) traditionally have been detected by their ability to repopulate the thymus of heavily irradiated mice following intravenous injection. Recently, an assay system involving the direct injection of pre-T cells into the thymus of sublethally irradiated animals has been described. Here we report the results of experiments designed to evaluate the ability of bone marrow cells to produce thymic repopulation following intrathymic injection in a wide range of donor-host strain combinations. Irradiated (600 R) mice were injected intrathymically with 2 X 10(6) bone marrow cells which differed from the recipient with respect to their Thy-1 allotype and the percentage of thymus cells expressing either donor- or recipient-type Thy-1 was determined 9 to 23 days after injection. The results of these experiments showed that thymocytes expressing the Thy-1 allotype derived from the donor marrow were only detected when the donor and host were matched at MHC. By contrast, thymic repopulation by MHC-mismatched donor marrow cells could readily be observed when these cells were given intravenously.  相似文献   

9.
Lethally irradiated AKR mice were reconstituted with C57BL/6 bone marrow cells. Though the allogeneic marrow transplantation protected AKR recipients from acute irradiation deaths, the mice given unmanipulated marrow developed severe GVHR disease, and 80% died within 50 days. The thymus and spleen from the recipient mice, following recovery of body weight between the 10th and 20th days, gradually involuted and became miniscule after Day 30. Thymocytes from recipients were found to be entirely of donor cell type by Day 15. Thereafter, however, as the graft versus host reaction (GVHR) developed, changes in sensitivity of the thymocytes to four different alloantisera directed toward donor histocompatibility antigens (H-2b, Thy 1.2, Lyt 1.2, and Lyt 2.2) were observed and these changes were associated with changes in antigen expression or quantity of Thy 1 antigens on the thymocytes. A different pattern of changes was observed in antigen expression on thymocytes in mice given B6 marrow cells that had been pretreated with anti-Thy 1 serum which prevented initiation of graft-vs-host disease and in the mice which received marrow not so treated and which regularly led to graft-vs-host disease. By contrast, the amount of H-2 antigen on the thymocytes from chimeras with or without GVHR was elevated equally. The mechanisms of these changes are discussed.  相似文献   

10.
When MRL/Mp(-)+/+(MRL/+) mice are lethally irradiated and then reconstituted with MRL/Mp-lpr/lpr (MRL/lpr) bone marrow and/or spleen cells, these MRL/+ mice develop "lpr-GVHD" which is similar to acute graft-versus-host disease (GVHD). Using a Thy-1 congenic strain of MRL/lpr mice (MRL/lpr-Thy-1.1), we analyzed T cell subpopulations in the thymus and spleen of MRL/+ mice suffering from lpr-GVHD. lpr-GVHD was induced in MRL/+ mice by transplantation of bone marrow cells (BMC) from MRL/lpr-Thy-1.1 mice; severe lymphocyte depletion associated with fibrosis was observed in the spleens after 7 weeks of bone marrow transplantation (BMT). Thymocytes of the host MRL/+ thymus were replaced with donor-derived cells from the early stage of lpr-GVHD, whereas in the spleen, a small number of host T cells (Thy-1.2+) (4-5%) were retained until the late stage of lpr-GVHD. Donor-type (Thy-1.1+) T cell subsets were not different from those of nontreated MRL/+ mice in the thymus, whereas in the spleen. CD8+ T cells (Thy-1.1+) reached a peak at 5 weeks after BMT, and CD4+ T cells (Thy-1.1+), a peak at 6 weeks. The elimination of T cells from MRL/lpr BMC had no evident effect on the prevention of lpr-GVHD. T cell subpopulations showed a similar pattern to GVHD elicited by MHC differences. Analyses of autoreactive T cells expressing V beta 5 or V beta 11 revealed that autoreactive T cells were deleted from the peripheral lymph nodes. Interestingly, the levels of IgG anti-ssDNA antibodies markedly increased, and both IgM and IgG rheumatoid factors slightly increased 5 to 7 weeks after BMT. These findings are discussed in relation to not only GVHD elicited by MHC differences but also autoimmune diseases.  相似文献   

11.
The role of hemopoietic stem cells and other cell types in the induction and maintenance of immunologic tolerance in the thymus was investigated by intravenous injection of Mls-semi-allogeneic cells into newborn mice less than 24 hr after birth. Mls-specific tolerance was induced by inoculation of peritoneal cells and thymus cells, and the tolerant state was compared with that induced by bone marrow cells which had hemopoietic stem cell activity and were able to create a stable chimera in both central and peripheral lymphoid organs. When peritoneal or thymus cells were injected, the level of tolerance attained was proportional to the number of cells injected, though peritoneal cells were 20 times as effective as thymus cells. In vivo functions of tolerance-inducing cells and their immediate precursors were radiosensitive and belonged to a Thy-1-, nylon-wool-nonadherent (probably non-B), weakly Sephadex G-10-adherent cell population. Tolerance induced by peritoneal cell injections was transient, starting to terminate within the first 2 weeks of life, while tolerance caused by bone marrow cell injections persisted through more than 6 weeks. Such transient tolerance induced by the former became long-lasting when followed by an additional injection of bone marrow cells, which did not cause thymic lymphocyte chimerism. All data indicated that bone marrow stem cells were engaged in tolerance induction and maintenance by continuously supplying tolerance-inducing nonlymphocytes.  相似文献   

12.
In the present study we investigated the presence of T-lymphocyte progenitors in the long-term murine bone marrow culture system described by Dexter: mature Thy-1 antigen-bearing T lymphocytes are lost in these cultures after a few days. By culturing nonadherent cells from such cultures in the presence of a supernatant of concanavalin A-stimulated spleen cells, a source of T-cell growth factor, we found that Thy-1 positive blast cells proliferated together with a second population of Thy-1 negative cells. These two populations of cells have been maintained in long-term in vitro cultures by passaging the cells in fresh conditioned medium at regular intervals. Moreover, we have been able to establish pure cultures of the Thy-1-bearing blast cells after separating them from the non-T cells using their adherence property to plastic surfaces. Long-term cultures of T lymphocytes can thus be established from long-term marrow cultures as well as from the spleen, thymus or fresh bone marrow.  相似文献   

13.
Cells from the lymphoid organs of C57BL/6 mice (from birth to 20 weeks) were monitored by the cytotoxicity assay for the presence of Qa-4 and Qa-5 surface antigens. Qa-4- and Qa-5-bearing cells are detectable in spleen, lymph nodes, and Peyer's patches, but not in thymus, liver, or bone marrow. Both antigens are present on small fractions of cells in each of these organs during the first week after birth. At 4–6 weeks of age, the fractions of Qa-4- and Qa-5-bearing cells rise to maximal levels which are then maintained throughout the ages studied (4–20 weeks). The relative proportion of these cell populations is greatest in the lymph nodes and smallest in the Peyer's patches, and in all three organs, more Qa-4- than Qa-5-positive cells are detected. The majority of Qa-4- and Qa-5-positive cells are Thy-1 positive, however, not all Thy-1- positive cells are Qa-4, Qa-5 positive. During postnatal development the ratio of Qa-4 or Qa-5-positive cells to Thy-1-positive cells increases in spleen, lymph nodes, and Peyer's patches indicating that cells bearing these antigens become a larger fraction of the T-cell population with age.  相似文献   

14.
Thy-1 antigens are the only cell membrane antigens known to be able to induce primary antibody responses in vitro. We have shown that antigens from the thymocytes of mice and rats were highly immunogenic in cultures of murine spleen cells for the induction of Thy-1.1-specific plaque-forming cell responses, whereas antigens from other tissues, including brains and bone marrow, were poorly immunogenic, if at all. The thymocyte-specific Thy-1 immunogenicity was carried by disrupted cell membranes, and the specific activity for inducing responses was closely linked to Thy-1. We then tried to determine the mechanism of anti-Thy-1 antibody responses in vitro that were induced by the uniquely immunogenic thymocyte antigens. The thymocyte Thy-1 antigens behaved as T cell-independent class 2 (TI-2) antigens: they induced responses in athymic nude mice but not in CBA/N mice with a B cell defect. The apparent TI-2 responses to thymocyte Thy-1 did, however, require Thy-1+ cells in the responder, similar to anti-DNP-Ficoll responses. The full development of the anti-Thy-1 responses required the participation of splenic adherent cells (SAC). Nevertheless, the mechanism of the SAC dependency of anti-Thy-1 responses did not involve antigen presentation to lymphocytes by antigen-pulsed SAC, which contrasted with the finding that the presentation of antigen by live SAC to lymphocytes was indispensable for responses to DNP-Ficoll. The poor Thy-1 responsiveness of SAC-depleted spleen cells was fully restored by the addition of soluble factors (IL 1-like molecules) released from SAC into the culture, which did not replace the SAC-requirement of responses to DNP-Ficoll. It was concluded from these results that Thy-1 or Thy-1-linked structures on thymocyte membranes have an intrinsic activity to directly signal either TI-2 B cells or immature T cells, or both, for activation in the presence of soluble factors released from adherent accessory cells. This conclusion is discussed in relation to a hypothetical view that the thymocyte Thy-1 would physiologically mediate cell-to-cell interactions among special subsets of lymphocytes under thymic influence.  相似文献   

15.
The kinetics of the appearance of potentially leukemic cells (PoLCs) for radiation-induced lymphoma in NFS mice was investigated by the opposite sex (male----female) transplantation assay. The origin of the cells of the lymphomas that developed in the host was decided by sex chromosome markers. The bone marrow and the spleen cells collected from mice 30 days after fractionated irradiation (1.7 Gy X 4) gave rise, upon transfer to 4-Gy-irradiated hosts, to tumors of either donor or host origin. Most tumors of donor origin were thymine-1-negative (Thy-1-) and surface immunoglobulin negative and classified as nonthymic lymphoma, while the tumors of host origin were mainly Thy-1-positive thymic lymphoma. In contrast, neither the bone marrow nor the thymus contained any PoLCs for thymic lymphoma 30 days after split-dose irradiation. These results indicate that PoLCs for Thy-1-lymphoma were induced in the bone marrow and spleens of NFS mice by the split-dose regimen which developed exclusively T-cell lymphomas in the absence of cell grafting.  相似文献   

16.
A novel stage in early B-lymphocyte differentiation has been identified in normal mouse bone marrow cells. Earlier work had demonstrated that bone marrow cells characterized by low levels of Thy-1 and lack of a panel of lineage markers (Thy-1lo Lin- cells) were highly enriched for pluripotent hematopoietic stem cells. In this paper, we present evidence that another bone marrow population, which expressed low levels of Thy-1 and coexpressed B220, a B-lineage-specific form of the leukocyte common antigen, contained early and potent precursors for B lymphocytes upon in vivo transfer to irradiated hosts. These Thy-1lo B220+ cells, comprising 1 to 2% of bone marrow cells, were enriched for large cells in the mitotic cycle; the population lacked significant pluripotent hematopoietic stem cell activity and myeloid-erythroid progenitors. Most strikingly, Thy-1lo B220+ cells represented a highly enriched population of bone marrow cells that could be targets of Abelson murine leukemia virus transformation. We propose that Thy-1lo B220+ bone marrow cells represent the earliest stage of committed lymphocyte progenitors, intermediate in differentiation between Thy-1lo Lin- pluripotent stem cells and, in the B lineage, Thy-1- B220+ pre-B cells.  相似文献   

17.
A fetal thymus organ culture system has been developed to study the differentiation of murine thymus-derived immunocompetent cells (T cells) such that cell yields can be easily monitored. This system has been used to study the effects of monoclonal anti-I-A antibodies on the growth of T cells. The addition of anti-I-A antibodies, but not anti-H2K monoclonal antibodies, to fetal thymus organ cultures resulted in a decreased yield of lymphoid cells. Anti-I-A-treated cultures did not produce cells that gave an immune response in MLC assays. Anti-I-A antibodies stained a small subpopulation of nonlymphoid cells in untreated cultures by indirect immunofluorescence that were no longer detectable in cultures that had been pretreated with anti-I-A antibody. Culture of fetal thymus lobes at low temperature (20 degrees C) for 1 wk resulted in a decrease in lymphocyte production, as well as a concomitant increase in the frequency of Ia-positive nonlymphoid cells. Co-culture of fetal liver or anti-thy-1 plus complement-treated adult bone marrow with such Ia-positive cell-enriched fetal thymus lobes at 37 degrees C resulted in the production of T cells. Anti-Thy-1.1 or -1.2 staining by indirect immunofluorescence of cells obtained from co-cultures that differed at the Thy-1 locus showed that the T cells produced were derived from the bone marrow or fetal liver. T cell production occurred in both syngeneic and allogeneic cocultures. However, if co-cultures were made by using 14-day gestation fetal thymus instead of fetal liver or bone marrow as donors of T cell precursors, T cell growth was observed only in syngeneic combinations. These results suggest that Ia-positive nonlymphoid cells play a role in the development of T cells in the fetal thymus, and that "thymus processed" T cell progenitors (but not the more immature progenitors in the fetal liver or bone marrow) are self-Ia restricted in their differentiation.  相似文献   

18.
The present paper reports the distribution of lymphoid and non-lymphoid cell types in the thymus of mice. To this purpose, we employed scanning electron microscopy and immunohistology. For immunohistology we used the immunoperoxidase method and incubated frozen sections of the thymus with 1) monoclonal antibodies detecting cell-surface-differentiation antigens on lymphoid cells, such as Thy-1, T-200, Lyt-1, Lyt-2, and MEL-14; 2) monoclonal antibodies detecting the major histocompatibility (MHC) antigens, H-2K, I-A, I-E, and H-2D; and 3) monoclonal antibodies directed against cell-surface antigens associated with cells of the mononuclear phagocyte system, such as Mac-1, Mac-2, and Mac-3. The results of this study indicate that subsets of T lymphocytes are not randomly distributed throughout the thymic parenchyma; rather they are localized in discrete domains. Two major and four minor subpopulations of thymocytes can be detected in frozen sections of the thymus: 1) the majority of cortical thymocytes are strongly Thy-1+ (positive), strongly T-200+, variable in Lyt-1 expression, and strongly Lyt-2+; 2) the majority of medullary thymocytes are weakly Thy-1+, strongly T-200+, strongly Lyt-1+, and Lyt-2- (negative); 3) a minority of medullary cells are weakly Thy-1+, T-200+, strongly Lyt-1+, and strongly Lyt-2+; 4) a small subpopulation of subcapsular lymphoblasts is Thy-1+, T-200+, and negative for the expression of Lyt-1 and Lyt-2 antigens; 5) a small subpopulation of subcapsular lymphoblasts is only Thy-1+ but T-200- and Lyt-; and 6) a small subpopulation of subcapsular lymphoblasts is negative for all antisera tested. Surprisingly, a few individual cells in the thymic cortex, but not in the medulla, react with antibodies directed to MEL-14, a receptor involved in the homing of lymphocytes in peripheral lymphoid organs. MHC antigens (I-A, I-E, H-2K) are mainly expressed on stromal cells in the thymus, as well as on medullary thymocytes. H-2D is also expressed at a low density on cortical thymocytes. In general, anti-MHC antibodies reveal epithelial-reticular cells in the thymic cortex, in a fine dendritic staining pattern. In the medulla, the labeling pattern is more confluent and most probably associated with bone-marrow-derived interdigitating reticular cells and medullary thymocytes. We discuss the distribution of the various lymphoid and non-lymphoid subpopulations within the thymic parenchyma in relation to recently published data on the differentiation of T lymphocytes.  相似文献   

19.
20.
Our previous study showed that in cutaneous graft-vs-host disease (GVHD) induced by intradermal injection of autoreactive T cells the epidermal structures spontaneously recovered from the destruction became resistant to the subsequent attempts to induce the cutaneous GVHD and that the resistance correlated well with a 30-fold increase in the number of Thy-1+ epidermal cells (Thy-1+EC). We show that the resistance to the cutaneous GVHD was never induced in athymic nude mice and adult thymectomy lethal radiation and bone marrow reconstitution (ATXBM) mice under the same conditions, indicating that the induction of the resistance is dependent on the presence of thymus. A great increase in the number of Thy-1+EC was similarly observed in the epidermis of the athymic nude and ATXBM mice that spontaneously recovered from the cutaneous GVHD and that remained susceptible to the induction of the cutaneous GVHD. However, the results with B10Thy-1.1----B6 radiation chimeras clearly demonstrate that the vast majority of the increased Thy-1+EC found in the "susceptible" epidermis of the ATXBM mice were of donor bone marrow origin and there was no increase in the number of host-derived Thy-1+EC, whereas in the "resistant" epidermis of the XBM mice both Thy-1+EC populations were equally increased. The overall results indicate that the expansion of Thy-1+EC that mature in the thymus is crucial to the induction of the resistance, although the migration of bone marrow-derived Thy-1+EC precursors to the epidermis occurs quite independently of the presence of thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号