首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein D (apoD) and lecithin:cholesterol acyl transferase (LCAT) are found on high density lipoprotein particles (HDLs) and have been postulated to form part of a complex involved in the transport of cholesterol from peripheral tissues to the liver for excretion. We have examined the sites of synthesis of the mRNAs for these two proteins in the rhesus monkey by in situ hybridization. ApoD mRNA-containing cells were widely distributed throughout peripheral tissues in interstitial and connective tissue fibroblasts often associated with blood vessels or capillaries. ApoD mRNA was also found localized in cells associated with peripheral nerves, neuroglial cells, cells in the subarachnoid space on the surface of the brain including the pial cells, perivascular cells, and scattered neurons in the brain. LCAT demonstrated a much more restricted pattern of synthesis and was found to be synthesized by hepatocytes, the basal cell layer of the epidermis, and in brain cell populations distinct from those that synthesize apoD. In the brain LCAT was synthesized by scattered neurons, neuroglial cells, ependymal cells, as well as a discrete cell layer in the cerebellum. ApoD has been shown to possess extensive homology to retinol binding protein, which has a binding pocket for vitamin A. We propose that apoD may also function to bind cholesterol or its derivatives in compartments not in direct contact with the blood. The findings of both apoD and LCAT synthesis in the brain suggest that they play a significant role in lipid transport in the brain.  相似文献   

2.
The structure of ApoD and its sites of synthesis have been discovered. These characteristics differ from those of the other apolipoproteins. The role of ApoD in the plasma lipoprotein system remains to be discovered, but the recent, rapid increase in our knowledge of this protein suggests that it plays an important role in the homeostasis or housekeeping of probably all organs. One of its functions is likely to be the transport of a hydrophobic ligand (a lipid) in a one-to-one molar ratio with itself. This transport is likely to occur unidirectionally between neighboring cells in an organ, and between perivascular cells and the blood circulation. The chemical structure of the natural ligand, or ligands, of ApoD in normal cells in vivo or in culture is not known, but ApoD has been shown to bind some steroids and bilirubin. Remarkable upregulation of synthesis of ApoD has been observed during regeneration of injured peripheral nerves. Perhaps the physiologic role of ApoD will prove to be more interesting and of equal importance in biology to the roles of the other apolipoproteins in cardiovascular disease.  相似文献   

3.
Apolipoprotein D (apoD) is an atypical plasma apolipoprotein and, based on its primary structure, it is a member of the lipocalin protein superfamily. Lipocalins have been extensively used as disease markers and, accordingly, apoD has become increasingly recognized as an important factor in the pathology of human neurodegenerative and neuropsychiatric disorders. ApoD expression is increased in the plasma and brains of subjects with schizophrenia and bipolar disorder, suggesting that it acts as a marker for disease pathology. ApoD also exhibits complex regulation by antipsychotic drug treatment and may represent a distinguishing mechanism of typical versus atypical drugs. The precise role of apoD in the CNS and disease remains to be elucidated, but recent findings have suggested that it plays an important role in the regulation of arachidonic acid signaling and metabolism providing further support for phospholipid membrane pathology in schizophrenia.  相似文献   

4.
Abstract: Apolipoprotein D (apoD), a member of the lipocalin superfamily of ligand transporters, has been implicated in the transport of several small hydrophobic molecules including sterols and steroid hormones. We have previously established that apoD is a secreted protein from cultured mouse astrocytes and that treatment with the oxysterol 25-hydroxycholesterol markedly stimulates apoD release. Here, we have investigated expression and cellular processing of apoD in the Niemann-Pick type C (NPC) mouse, an animal model of human NPC, which is a genetic disorder affecting cellular cholesterol transport. NPC is phenotypically characterized by symptoms of chronic progressive neurodegeneration. ApoD gene expression was up-regulated in cultured NPC astrocytes and in NPC brain. ApoD protein levels were also increased in NPC brain with up to 30-fold higher apoD content in the NPC cerebellum compared with control mice. Subcellular fractionation of NPC brain homogenates revealed that most of the apoD was associated with the myelin fraction. ApoD was found to be a secreted protein from cultured normal astrocytes and treatment with the oxysterol, 25-hydroxycholesterol, markedly stimulated apoD release (by five- to 10-fold). By contrast, secretion of apoD from NPC astrocytes was markedly reduced and could not be stimulated by oxysterol treatment. Secretion of apoE, another apolipoprotein normally produced by astrocytes, was similar in NPC and control cells. Furthermore, apoE secretion was not potentiated by oxysterol treatment in either cell type. Plasma levels of apoD were sixfold higher in NPC, whereas hepatic levels were substantially reduced compared with controls, possibly reflecting reduced hepatic clearance of the circulating protein. These results reveal hitherto unrecognized defects in apoD metabolism in NPC that appear to be linked to the known defects in cholesterol homeostasis in this disorder.  相似文献   

5.
We report for the first time the quantification of relative apolipoprotein D (apoD) mRNA concentrations in a wide selection of organs and a detailed characterization of the rabbit protein. ApoD cDNA clones were isolated from a rabbit testis cDNA library by screening with a human apoD cDNA-derived RNA probe. The 912 nucleotide sequence of rabbit apoD cDNA contains a unique reading frame coding for a protein sharing 80% homology with human apoD. The two sequences have two potential asparagine-linked glycosylation sites at the same positions, almost superimposable hydrophobicity plot, and the antigenic proteins show similar charge polymorphism, Mr, and lipoprotein distribution. This high degree of similarity shows that the rabbit system can be used as a model for apoD studies. Moreover, the two consensus sequences of the hydrophobic ligand carrier (alpha 2-microglobulin) family present in human apoD are also found in the rabbit protein and these sequences coincide with the most conserved regions. The distribution of apoD mRNA among rabbit organs was determined by Northern blot and quantitative dot blot analysis. The highest levels of mRNA were found in spleen, adrenal glands, lungs, brain, testis, and kidneys. Moderate or low concentrations were detected in all the other organs tested including liver and small intestine. Thus, our results show that the apoD gene is expressed mainly in peripheral organs, with levels as high as 59-fold that of the liver, unlike other apolipoproteins. We suggest that apoD exerts its main function locally in peripheral organs.  相似文献   

6.
ApoD (apolipoprotein D) is up-regulated in AD (Alzheimer's disease) and upon oxidative stress. ApoD inhibits brain lipid peroxidation in vivo, but the mechanism is unknown. Specific methionine residues may inhibit lipid peroxidation by reducing radical-propagating L-OOHs (lipid hydroperoxides) to non-reactive hydroxides via a reaction that generates MetSO (methionine sulfoxide). Since apoD has three conserved methionine residues (Met(49), Met(93) and Met(157)), we generated recombinant proteins with either one or all methionine residues replaced by alanine and assessed their capacity to reduce HpETEs (hydroperoxyeicosatetraenoic acids) to their HETE (hydroxyeicosatetraenoic acid) derivatives. ApoD, apoD(M49-A) and apoD(M157-A) all catalysed the reduction of HpETEs to their corresponding HETEs. Amino acid analysis of HpETE-treated apoD revealed a loss of one third of the methionine residues accompanied by the formation of MetSO. Additional studies using apoD(M93-A) indicated that Met(93) was required for HpETE reduction. We also assessed the impact that apoD MetSO formation has on protein aggregation by Western blotting of HpETE-treated apoD and human brain samples. ApoD methionine oxidation was associated with formation of apoD aggregates that were also detected in the hippocampus of AD patients. In conclusion, conversion of HpETE into HETE is mediated by apoD Met(93), a process that may contribute to apoD antioxidant function.  相似文献   

7.
Abstract: Apolipoprotein D (apoD) is a member of the lipocalin family of proteins. Most members of this family are transporters of small hydrophobic ligands, although in the case of apoD, neither its physiological function(s) nor its putative ligand(s) have been unequivocally identified. In humans, apoD is expressed in several tissues, including the CNS, and its synthesis is greatly increased during regeneration of rat peripheral nerves. As apoD may have an important function in the nervous system and, particularly, in nerve regeneration, we measured immunoreactive apoD levels in the hippocampus and in CSF of patients with either Alzheimer's disease (AD) or other neuropathologies. In parallel, we determined the concentrations of apolipoprotein E (apoE), another apolipoprotein also implicated in nerve regeneration and in the etiology of AD. Levels of apoD but not apoE were increased in the hippocampus of AD patients compared with controls. ApoD concentrations, as determined by radioimmunoassay, were significantly increased in the CSF of AD patients (4.23 ± 1.58 µg/ml) and patients with other pathologies (3.29 ± 1.35 µg/ml) compared with those in the CSF of normal subjects (1.15 ± 0.71 µg/ml). Although the differences were smaller than for apoD, the mean apoE concentrations in the CSF of both groups of patients were also significantly higher than those of controls. In AD patients, apoD, but not apoE, levels in CSF and hippocampus increased as a function of inheritance of the ε4 apoE allele. This study therefore demonstrates that increased apoD levels in the hippocampus and in CSF are a marker of neuropathology, including that associated with AD, and are independent of apoE concentrations.  相似文献   

8.
Human apolipoprotein-D (apoD) is a glycosylated lipocalin that plays a protective role in Alzheimer’s disease due to its antioxidant function. Native apoD from human body fluids forms oligomers, predominantly a stable tetramer. As a lipocalin, apoD binds and transports small hydrophobic molecules such as progesterone, palmitic acid and sphingomyelin. Oligomerisation is a common trait in the lipocalin family and is affected by ligand binding in other lipocalins. The crystal structure of monomeric apoD shows no major changes upon progesterone binding. Here, we used small-angle X-ray scattering (SAXS) to investigate the influence of ligand binding and oxidation on apoD oligomerisation and conformation. As a solution-based technique, SAXS is well suited to detect changes in oligomeric state and conformation in response to ligand binding. Our results show no change in oligomeric state of apoD and no major conformational changes or subunit rearrangements in response to binding of ligands or protein oxidation. This highlights the highly stable structure of the native apoD tetramer under various physiologically relevant experimental conditions.  相似文献   

9.
Apolipoprotein D (apoD) expression has been shown to correlate both with cell cycle arrest and with prognosis in several types of malignancy, including central nervous system astrocytomas and medulloblastomas. ApoD expression was investigated by real-time quantitative RT-PCR using RNA extracted from 68 formalin-fixed, paraffin-embedded brain specimens. Glyceraldehyde phosphate dehydrogenase was used as an internal control. Quantitation was achieved on all specimens. Sixteen poorly infiltrating WHO grade I glial neoplasms (i.e., pilocytic astrocytomas and gangliogliomas) showed an average 20-fold higher apoD expression level compared with the 20 diffusely infiltrating glial neoplasms (i.e., glioblastoma, anaplastic astrocytoma, oligodendrogliomas; p=0.00004). A small number of exceptions (i.e., two high-expressing glioblastomas and three low-expressing gangliogliomas) were identified. Analyzed as individual tumor groups, poorly infiltrating grade I pilocytic astrocytomas and gangliogliomas differed significantly from each tumor type within the diffusely infiltrating higher-grade category (p<0.05 for each comparison) but not from each other (p>0.05). Conversely, each individual tumor type within the diffusely infiltrating category differed significantly from both pilocytic astrocytomas and gangliogliomas (p<0.05) but did not vary from other infiltrating tumors (p>0.05). Ependymomas, non-infiltrating grade II neoplasms, expressed levels of apoD similar to or lower than levels expressed by the diffusely infiltrating gliomas. Ten medulloblastomas with survival longer than 3 years averaged slightly higher apoD expression than four fatal medulloblastomas; however, this result was not statistically significant and individual exceptions were notable. In 17 of the medulloblastomas, MIB-1 proliferation rates quantitated by image cytometry did not correlate with apoD expression. In addition, apoD expression was 5-fold higher in the slowly proliferating grade I glial neoplasms compared with non-proliferating normal brain tissue (p=0.01), suggesting that apoD expression is not simply an inverse measure of proliferation. ApoD expression measured by quantitative RT-PCR may be useful in the differential diagnosis of primary brain tumors, particularly pilocytic astrocytomas and gangliogliomas.  相似文献   

10.
Apolipoprotein D (ApoD) constitutes an atypical lipoprotein in so far as it is predominantly found associated with HDL particles but belongs to the lipocalin structural family. Apart from its involvement in serum lipid transport it is abundant in various tissues, and differing physiological functions have been ascribed to it. We have now developed an E. coli expression system that permits the efficient production of biochemically homogeneous ApoD via secretion into the bacterial periplasm. Detailed ligand binding studies by fluorescence titration revealed that progesterone and arachidonic acid are complexed with dissociation constants both in the 1 microM range, whereas the presumed ligands pregnenolone, bilirubin and E-3M2H are not recognized by the recombinant protein. In contrast with previous reports it thus appears that ApoD discriminates well in its binding function between closely related compounds.  相似文献   

11.
Human apolipoprotein D (ApoD) occurs in plasma associated with high density lipoprotein. Apart from the involvement in lipid metabolism, its binding activity for progesterone and arachidonic acid plays a role in cancer development and neurological diseases. The crystal structures of free ApoD and its complex with progesterone were determined at 1.8A resolution and reveal a lipocalin fold. The narrow, mainly uncharged pocket within the typical beta-barrel accommodates progesterone with its acetyl side chain oriented toward the bottom. The cavity adopts essentially the same shape in the absence of progesterone and allows complexation of arachidonic acid as another cognate ligand. Three of the four extended loops at the open end of the beta-barrel expose hydrophobic side chains, which is an unusual feature for lipocalins and probably effects association with the high density lipoprotein particle by mediating insertion into the lipid phase. This mechanism is in line with an unpaired Cys residue in the same surface region that can form a disulfide cross-link with apolipoprotein A-II.  相似文献   

12.
13.
Apolipoprotein D (apoD), a 169 amino acid member of the lipocalin family, is thought to be a transporter of small, hydrophobic ligands. A panel of 10 anti-apoD monoclonal antibodies (mAbs) was prepared and characterized in order to define apoD structure-function relationships. An apoD epitope map was constructed based on reactivity of the mAbs with apoD fragments. Three mAbs react with epitopes between apoD residues 7-78, seven mAbs with epitopes between residues 128-169, one mAb recognizes an epitope that straddles residues 99-102 and one mAb is specific for an epitope composed of non-contiguous apoD residues. Several pairs of mAbs whose respective epitopes are widely separated in apoD primary structure can compete for binding to immobilized apoD. This would be consistent with the compact beta-barrel tertiary structure that apoD is thought to adopt. None of the mAbs block the interaction of apoD with pregnenolone, a putative physiological ligand for apoD.  相似文献   

14.
Based on our previous observation that monoclonal antibody anti-apoD-4E11 reacted with several HDL proteins we studied them further with three questions in mind: i) is there common protein polymorphism in healthy individuals? ii) how many proteins are present and what are their characteristics? iii) are they all apolipoproteins and do they have the same lipoprotein distribution as apoD? Isolated, delipidated apoD was used as a standard for radioimmunometric assay of plasma with antibody 4E11. The antigen varied from 3 to 11 mumol-equivalents of apoD per liter of plasma (equivalent to 5-20 mg apoD/dl plasma) with means of 6.1 and 6.8 mumol/l in men and women, respectively. Two-dimensional electrophoresis of plasma found up to eight 4E11-antigenic-proteins of different Mr, each heterogeneous in pI. All plasmas tested contained apoD and an Mr 38,000 antigen, the latter being the most immunoreactive. Six proteins of Mr 70,000-94,000 were found, but the number varied between subjects. Eighty nine percent of the plasma antigen was associated with lipoproteins: 83% with HDL and VHDL, 5% with LDL and VLDL. Lipoproteins of all sizes, separated by polyacrylamide gradient gel electrophoresis, contained the antigen. ApoD was almost the only 4E11-antigen in LDL, and was in two states: the one free, the other an apoD-apoB mixed disulfide complex. The apparent proportions of higher Mr antigens increased with increasing lipoprotein density, and the proportion of apoD decreased reciprocally. None of these 4E11-antigenic-proteins cross-reacted with antiserum to retinol-binding protein.  相似文献   

15.
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.  相似文献   

16.
Hu  Chang-Yong  Ong  Wei-Yi  Sundaram  R. K.  Chan  Chumpon  Patel  Shutish C. 《Brain Cell Biology》2001,30(3):209-218
Apolipoprotein D, a lipocalin transporter of small hydrophobic molecules including sterols, steroid hormones and arachidonic acid, is a widely expressed protein in peripheral and neural tissues. It has been shown to be upregulated in the context of neural injury, and with neuronal degeneration and regeneration. Here we have used light and electron microscopic immunocytochemistry with immunogold labeling to delineate the pattern of expression of apoD in the human brain. Our results confirm previous observations that apoD is a predominantly glial protein in the nervous system. In addition we have found that apoD is present in the cytosol and outer membrane of the nuclear envelope of glial cells in the neuropil. The labeled glial cells were putatively identified as a population of oligodendrocyte precursor cells. Immunoreactivity was also associated with the cytosol of perivascular cells, and lysosomes of pericytes, in the walls of blood vessels. These observations suggest a potential role for glial cells and apoD, in the transport of sterols and small hydrophobic molecules to, or from, blood vessels in the cortex.  相似文献   

17.
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection.  相似文献   

18.
In this report, we have identified two apolipoproteins (apo), apoD and apoA-IV, that, together with the previously identified apoA-I and apoE, accumulate in the regenerating peripheral nerve. These four apolipoproteins were identified in regenerating rat sciatic nerves by their molecular weights, their isoelectric points, and their recognition by specific antibodies. Antibodies were also used to document the changing concentrations of these apolipoproteins in homogenates of regenerating sciatic nerves collected 1 day to 6 weeks after a denervating crush injury. By 3 weeks after injury, at their peak accumulation, apoA-IV and apoA-I had increased 14- and 26-fold, respectively, relative to their concentrations in the normal nerve. Apolipoproteins D and E, in contrast, increased over 500- and 250-fold, respectively, by 3 weeks. These same apolipoproteins also accumulated in the regenerating sciatic nerves of two other species, the rabbit and the marmoset monkey. Immunocytochemistry showed that apoD was produced by astrocytes and oligodendrocytes in the normal central nervous system, and by neurolemmal or fibroblastic cells in the normal peripheral nervous system. Metabolic labeling of both apoD and apoE by [35S]methionine during an in vitro incubation of regenerating rat sciatic nerve segments confirmed that these apolipoproteins are synthesized by the nerve. Neither apoA-IV nor apoA-I was metabolically labeled, however, suggesting that they enter the nerve from the plasma. The results from this study provide evidence that several different apolipoproteins from various sources may play a role in lipid transport within neural tissues.  相似文献   

19.
This report describes further studies on the characterization of apolipoprotein D (ApoD), a recently recognized human plasma apolipoprotein, and presents results on the isolation and distribution of its lipoprotein form, lipoprotein D (LP-D). ApoD, isolated by a procedure combining hydroxylapatite and Sephadex G-100 column chromatography, migrated on 7% polyacrylamide gel as a single band with a mobility intermediate between those of A-II and C-II polypeptides. On double diffusion and immunoelectrophoresis, ApoD reacted only with antiserum to ApoD. It was characterized by the presence of all common amino acids including half-cystine. The amino terminal acid was blocked. Carbohydrate analysis demonstrated that ApoD is a glycoprotein with glucose, mannose, galactose, glucosamine, and sialic acid accounting for 18% of the dry weight of ApoD. The estimated molecular weight of ApoD IS 22 100. ApoD occurs in the serum as a lipoprotein which was isolated from high density lipoproteins3 by two different chromatographic procedures. In the first procedure, high density lipoproteins3 were treated with neuraminidase and chromatographed on concanavlin A. The retained fraction containing LP-D was purified by hydroxylapatite column chromatography. Alternatively, LP-D was isolated by a procedure combining chromatography of high density lipoproteins3 or whole serum on an immunosorber containing antibodies to ApoD, and hydroxylapatite column chromatography. LP-D displayed a single, symmetrical boundary in the analytical ultracentrifuge and a single band on 7% polyacrylamide gel electrophoresis. When injected into rabbits it produced antisera that reacted only with ApoD. On immunoelectrophoresis LP-D had a mobility different from that of lipoprotein A (LP-A). A direct immunological comparison of LP-D and LP-A showed a reaction of nonidentity. LP-D consists of 65-75% protein and 25-35% lipid. The lipid moiety contains cholesterol, cholesterol ester, triglyceride, and phospholipid. The phospholipid. composition is characterized by a relative high content of lysolecithin and sphingomyelin and a relatively low content of lecithin. We have concluded from these studies that ApoD is a unique apolipoprotein that exists in the form of a distinct lipoprotein family with a macromolecular distribution extending from very low density lipoproteins into very high density lipoproteins, but with a maximum concentration in high density lipoproteins3 and a minimum concentration in high density lipoproteins.  相似文献   

20.
Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号