首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An approach based on complementation-addressed modification of nucleic acids by oligodeoxyribonucleotide derivatives was proposed for changing the spatial structure of particular RNA sites in order to study their role in the biological activity of the total RNA molecule. Hepatitis C virus (HCV) IRES was used as a model. Oligodeoxyribonucleotide derivatives contained a 4-[N-(2-chloroethyl)-N-methylamino]benzylamino group at the 5'-P and were complementary to various RNA sites located in regions of hairpins II, IIId, or IIIe. Covalent adducts resulting from RNA alkylation with the derivatives were isolated by denaturing PAGE and tested for binding with the 40S subunit of human ribosomes. Structural alteration of hairpin II had no effect, whereas alteration of hairpin IIIe substantially reduced the binding. The RNA with modified hairpin IIId showed virtually no binding with the 40S subunit. Hairpin IIId was assumed to play a critical role in the binding of HCV IRES with the 40S subunit.  相似文献   

2.
Human growth hormone (hGH) binds and activates lactogenic receptors by a sequential receptor dimerization mechanism. The affinity for the first lactogenic receptor is increased due to one zinc molecule linking hGH residues H18 and E174, located in helices 1 and 4, respectively, with two adjacent residues in the lactogenic receptor (D187 and H188). Two functionally unique groups of mutant hGHs have been identified. Addition of 25 microM zinc to lactogenic bioassays differentially affects mutant activities based on which group they belong to. One mutation (G120R) is located within the binding surface of hGH that interacts with the second lactogenic receptor. In the presence of endogenous zinc, G120R reduces the maximal activity of hGH without altering either the agonist or antagonist phases of the bell-shaped dose-response curve. Addition of zinc to this assay further reduces the activity of this protein. In contrast, mutations within a hydrophobic motif in hGH that functionally couples the two lactogenic receptor binding sites decrease the sensitivity (right-shift) of the agonist phase of the dose-response curve without similarly affecting the antagonist phase. The addition of zinc to these lactogenic assays increases the sensitivity (left-shifts) of the dose-response curves, largely negating the effect of these mutations. The effects of zinc differentiate between mutations within these two distinct functional motifs by limiting the pool of potential conformations that are available for binding within either of the receptor binding sites of this ligand.  相似文献   

3.
Samuni U  Dantsker D  Roche CJ  Friedman JM 《Gene》2007,398(1-2):234-248
Ligand recombination studies play a central role both for characterizing different hemeproteins and their conformational states but also for probing fundamental biophysical processes. Consequently, there is great importance to providing a foundation from which one can understand the physical processes that give rise to and modulate the large range of kinetic patterns associated with ligand recombination in myoglobins and hemoglobins. In this work, an overview of cryogenic and solution phase recombination phenomena for COMb is first reviewed and then a new paradigm is presented for analyzing the temperature and viscosity dependent features of kinetic traces in terms of multiple phases that reflect which tier(s) of solvent slaved protein dynamics is (are) operative on the photoproduct population during the time course of the measurement. This approach allows for facile inclusion of both ligand diffusion among accessible cavities and conformational relaxation effects. The concepts are illustrated using kinetic traces and MEM populations derived from the CO recombination process for wild type and mutant myoglobins either in sol-gel matrices bathed in glycerol or in trehalose-derived glassy matrices.  相似文献   

4.
5.
Catalytic and other functionally important residues in proteins can often be mutated to yield more stable proteins. Many of these residues are charged residues that are located in electrostatically unfavorable environments. Here it is demonstrated that because continuum electrostatics methods can identify these destabilizing residues, the same methods can also be used to identify functionally important residues in otherwise uncharacterized proteins. To establish this point, detailed calculations are performed on six proteins for which good structural and mutational data are available from experiments. In all cases it is shown that functionally important residues known to be destabilizing experimentally are among the most destabilizing residues found in the calculations. A larger scale analysis performed on 216 different proteins demonstrates the existence of a general relationship between the calculated electrostatic energy of a charged residue and its degree of evolutionary conservation. This relationship becomes obscured when electrostatic energies are calculated using Coulomb's law instead of the more complete continuum electrostatics method. Finally, in a first predictive application of the method, calculations are performed on three proteins whose structures have recently been reported by a structural genomics consortium.  相似文献   

6.
A new functionally based kinetic model for enzymatic hydrolysis of pure cellulose by the Trichoderma cellulase system is presented. The model represents the actions of cellobiohydrolases I, cellobiohydrolase II, and endoglucanase I; and incorporates two measurable and physically interpretable substrate parameters: the degree of polymerization (DP) and the fraction of beta-glucosidic bonds accessible to cellulase, F(a) (Zhang and Lynd, 2004). Initial enzyme-limited reaction rates simulated by the model are consistent with several important behaviors reported in the literature, including the effects of substrate characteristics on exoglucanase and endoglucanase activities; the degree of endo/exoglucanase synergy; the endoglucanase partition coefficient on hydrolysis rates; and enzyme loading on relative reaction rates for different substrates. This is the first cellulase kinetic model involving a single set of kinetic parameters that is successfully applied to a variety of cellulosic substrates, and the first that describes more than one behavior associated with enzymatic hydrolysis. The model has potential utility for data accommodation and design of industrial processes, structuring, testing, and extending understanding of cellulase enzyme systems when experimental date are available, and providing guidance for functional design of cellulase systems at a molecular scale. Opportunities to further refine cellulase kinetic models are discussed, including parameters that would benefit from further study.  相似文献   

7.
The effects of different solvent viscosities on the kinetic parameters of ATP hydrolysis by myosin and heavy meromyosin (HMM) were investigated at high and low ionic strength (i.e., 0.53 and 0.08 M KCl where myosin is polymerized into thick filament). The solvent viscosity was adjusted by the addition of appropriate amounts of sucrose. The maximum rate constants (V m ) for both myosin and HMM decreased monotonically with increasing solvent viscosity at either ionic strength. The Michaelis constants (K m ) for soluble myosin and HMM became minima at a viscosity nearly twice that of the solvent without sucrose, then increased abruptly with increasing solvent viscosity. On the other hand,K m of polymerized myosin at the low ionic strength decreased monotonically with increasing solvent viscosity. These experimental results are discussed with special reference to Kramers' kinetic theory of a chemically reacting system in viscous media.  相似文献   

8.
In this work we report the thermal behavior (10-300 K) of the Soret band lineshape of deoxy and carbonmonoxy derivatives of Asian elephant (Elephas maximus) and horse myoglobins together with their carbon monoxide recombination kinetics after flash photolysis; the results are compared to analogous data relative to sperm whale myoglobin. The Soret band profile is modeled as a Voigt function that accounts for the coupling with high and low frequency vibrational modes, while inhomogeneous broadening is taken into account with suitable distributions of purely electronic transition frequencies. This analysis makes it possible to isolate the various contributions to the overall lineshape that; in turn, give information on structural and dynamic properties of the systems studied. The optical spectroscopy data point out sizable differences between elephant myoglobin on one hand and horse and sperm whale myoglobins on the other. These differences, more pronounced in deoxy derivatives, involve both the structure and dynamics of the heme pocket; in particular, elephant myoglobin appears to be characterized by larger anharmonic contributions to soft modes than the other two proteins. Flash photolysis data are analyzed as sums of kinetic processes with temperature-dependent fractional amplitudes, characterized by discrete pre-exponentials and either discrete or distributed activation enthalpies. In the whole temperature range investigated the behavior of elephant myoglobin appears to be more complex than that of horse and sperm whale myoglobins, which is in agreement with the increased anharmonic contributions to soft modes found in the former protein. Thus, to satisfactorily fit the time courses for CO recombination to elephant myoglobin five distinct processes are needed, only one of which is populated over the whole temperature range investigated. The remarkable convergence and complementarity between optical spectroscopy and flash photolysis data confirms the utility of combining these two experimental techniques in order to gain new and deeper insights into the functional relevance of protein fluctuations.  相似文献   

9.
Effectors of muscle phosphofructokinase show opposing action on the activity of the enzyme depending upon the concentration of phosphoryl donor employed in the assay. Established inhibitors, such as citrate, activate at low ATP or ITP concentrations while known activators, such as AMP, ADP, and cyclic AMP inhibit at low ATP or ITP concentrations. Inorganic phosphate, on the other hand, activates at all substrate concentrations. The paradoxical effects at low substrate concentrations are dependent upon the order of addition of reaction components. A model is proposed to explain these and other regulatory phenomena of phosphofructokinase.  相似文献   

10.
Hardy LW  Kirsch JF 《Biochemistry》1984,23(6):1282-1287
The solvent kinetic isotope effects (SKIE's) on k(cat) (D(V)) and on k(cat/Km[D(V/K)] were determined for the Bacillus cereus beta-lactamase I catalyzed hydrolysis of five substrates that have values of k(cat)/K(m) varying over the range (0.014-46.3) X 10(6)M(-1) s(-1) and of k(cat) between 0.5 and 2019 s(-1). The variation of D(V/K) was only from 1.06 to 1.25 among these compounds and that in D(V) was from 1.50 to 2.16. These results require that Dk(1), the SKIE on the enzyme-substrate association rate constant, and D(k-1/k2), that on the partition ratio of the ES complex, both be near 1. The larger SKIE observed on D(V) requires that an exchangeable proton be in flight for either or both the acylation and the deacylation reaction. The pH dependence of the values k(cat)/K(m) for three substrates shows identical pK(a)s of 5.5. and 8.4. This identity combined with the fact that only one of these three substrates is kinetically "sticky" proves that the substrates can combine productively with only one protonic form of the enzyme. There is considerable substrate variation in the pK(a) values of k(cat) observed vs. pH profiles; the inflection points for all substrates studied are at pH values more extreme than are observed in the pH profiles for k(cat)/K(m).  相似文献   

11.
A structure-based kinetic model was developed to predict the thermomechanical response of collagenous soft tissues. The collagen fibril was represented as an ensemble of molecular arrays with cross-links connecting the collagen molecules within the same array. A two-state kinetic model for protein folding was employed to represent the native and the denatured states of the collagen molecule. The Monte Carlo method was used to determine the state of the collagen molecule when subjected to thermal and mechanical loads. The model predictions were compared to existing experimental data for New Zealand white rabbit patellar tendons. The model predictions for one-dimensional tissue shrinkage and the corresponding mechanical property degradation agreed well with the experimental data, showing that the gross tissue behavior is dictated by molecular-level phenomena.  相似文献   

12.
13.
DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of gene-specific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.  相似文献   

14.
Lesch-Nyhan syndrome caused by a complete deficiency of hypoxanthine guanine phosphoribosyltransferase (HPRT) is the result of a heterogeneous group of germ line mutations. Identification of each mutant gene provides valuable information as to the type of mutation that occurs spontaneously. We report here a newly identified HPRT mutation in a Japanese patient with Lesch-Nyhan syndrome. This gene, designated HPRT Tokyo, had a single nucleotide change from G to A, as identified by sequencing cDNA amplified by the polymerase chain reaction. Allele specific oligonucleotide hybridization analysis using amplified genomic DNA showed that the mutant gene was transmitted from the maternal germ line. This mutation would lead to an amino acid substitution of Asp for Gly at the amino acid position 140 located within the putative 5-phosphoribosyl-1-pyrophosphate (PRPP) binding region. Missense mutations in human HPRT deficient patients thus far reported tend to accumulate in this functionally active region. However, a comparison of the data suggested that both missense and synonymous mutations can occur at any coding sequence of the human germ line HPRT gene, but that a limited percentage of all the missense mutations cause disease. The probability that a mutation will cause disease tends to be higher when the missense mutation is within a functionally important sequence.  相似文献   

15.
In many different species it is common for animals to spend large portions of their lives in groups. Such groups need to divide available resources amongst the individuals they contain and this is often achieved by means of a dominance hierarchy. Sometimes hierarchies are stable over a long period of time and new individuals slot into pre-determined positions, but there are many situations where this is not so and a hierarchy is formed out of a group of individuals meeting for the first time. There are several different models both of the formation of such dominance hierarchies and of already existing hierarchies. These models often treat the two phases as entirely separate, whereas in reality, if there is a genuine formation phase to the hierarchy, behaviour in this phase will be governed by the rewards available, which in turn depends upon how the hierarchy operates once it has been formed. This paper describes a method of unifying models of these two distinct phases, assuming that the hierarchy formed is stable. In particular a framework is introduced which allows a variety of different models of each of the two parts to be used in conjunction with each other, thus enabling a wide range of situations to be modelled. Some examples are given to show how this works in practice.  相似文献   

16.
A comprehensive kinetic model for lipoxygenase catalysis is proposed which includes the simultaneous occurrence of dioxygenase and hydroperoxidase activities and is based on the assumption of a single binding site for substrate fatty acid and product. The aerobic reaction of purified lipoxygenase from rabbit reticulocytes with 9,12(Z,Z)-octadecadienoic acid (linoleic acid) as substrate was studied. The rate constants and the dissociation constants of this enzyme were calculated for the model from progress curves; the model describes correctly the experimental data. The following kinetic features of the reticulocyte enzyme are assumed to apply generally to lipoxygenases. (a) The enzyme shows autoactivation by its product. (b) The rate-limiting step is the hydrogen abstraction. (c) Both substrate fatty acid and its product are competitive inhibitors of the lipoxygenase. (d) Lowering the oxygen concentration enhances the degree of substrate inhibition, whereas product inhibition is not influenced. (e) If substrate is in excess the oxygen concentration determines the share of dioxygenase and hydroperoxidase activities of the enzyme. As predicted from the model it was found that at low concentrations of oxygen the regio- and stereo-specificities of the dioxygenation are diminished. During the autoactivation phase the steady-state approximation does not hold.  相似文献   

17.
The results of extended (80-ns) molecular dynamics simulations of wild-type and YQR triple mutant of sperm whale deoxy myoglobin in water are reported and compared with the results of the simulation of the intermediate(s) obtained by photodissociation of CO in the wild-type protein. The opening/closure of pathways between preexistent cavities is different in the three systems. For the photodissociated state, we previously reported a clear-cut correlation between the opening probability and the presence of the photolyzed CO in the proximity of the passage; here we show that in wild-type deoxy myoglobin, opening is almost random. In wild-type deoxy myoglobin, the passage between the distal pocket and the solvent is strictly correlated to the presence/absence of a water molecule that simultaneously interacts with the distal histidine side chain and the heme iron; conversely, in the photodissociated myoglobin, the connection with the bulk solvent is always open when CO is in the vicinity of the A pyrrole ring. In YQR deoxy myoglobin, the mutated Gln(E7)64 is stably H-bonded with the mutated Tyr(B10)29. The essential dynamics analysis unveils a different behavior for the three systems. The motion amplitude is progressively restricted in going from wild-type to YQR deoxy myoglobin and to wild-type myoglobin photoproduct. In all cases, the principal motions involve mainly the same regions, but their directions are different. Analysis of the dynamics of the preexisting cavities indicates large fluctuations and frequent connections with the solvent, in agreement with the earlier hypothesis that some of the ligand may escape from the protein through these pathways.  相似文献   

18.
19.
Differential scanning calorimetric (DSC) studies of the glassy states of as-received and hydrated lysozyme, hemoglobin, and myoglobin powders, with water contents of < or = 0.25, < or = 0.30, and < or = 0.29 g/g of protein, show that their heat capacity slowly increases with increasing temperature, without showing an abrupt increase characteristic of glass-->liquid transition. Annealing (also referred to as physical aging) of the hydrated proteins causes their DSC scans to show an endothermic region, similar to an overshoot, immediately above the annealing temperature. This annealing effect appears at all temperatures between approximately 150 and 300 K. The area under these peaks increases with increasing annealing time at a fixed temperature. The effects are attributed to the presence of a large number of local structures in which macromolecular segments diffuse at different time scales over a broad range. The lowest time scale corresponds to the > N-H and -O-H group motions which become kinetically unfrozen at approximately 150-170 K on heating at a rate of 30 K min-1 and which have a relaxation time of 5-10 s in this temperature range. The annealing effects confirm that the individual glass transition of the relaxing local regions is spread over a temperature range up to the denaturation temperature region of the proteins. The interpretation is supported by simulation of DSC scans in which the distribution of relaxation times is assumed to be exceptionally broad and in which annealing done at several temperatures over a wide range produces endothermic effects (or regions of DSC scans) qualitatively similar to those observed for the hydrated proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号