Far-red illumination of plant leaves for a few seconds induces a delayed luminescence rise, or afterglow, that can be measured with the thermoluminescence technique as a sharp band peaking at around 40-45 °C. The afterglow band is attributable to a heat-induced electron flow from the stroma to the plastoquinone pool and the PSII centers. Using various Arabidopsis and tobacco mutants, we show here that the electron fluxes reflected by the afterglow luminescence follow the pathways of cyclic electron transport around PSI. In tobacco, the afterglow signal relied mainly on the ferredoxin-quinone oxidoreductase (FQR) activity while the predominant pathway responsible for the afterglow in Arabidopsis involved the NAD(P)H dehydrogenase (NDH) complex. The peak temperature Tm of the afterglow band varied markedly with the light conditions prevailing before the TL measurements, from around 30 °C to 45 °C in Arabidopsis. These photoinduced changes in Tm followed the same kinetics and responded to the same light stimuli as the state 1-state 2 transitions. PSII-exciting light (leading to state 2) induced a downward shift while preillumination with far-red light (inducing state 1) caused an upward shift. However, the light-induced downshift was strongly inhibited in NDH-deficient Arabidopsis mutants and the upward shift was cancelled in plants durably acclimated to high light, which can perform normal state transitions. Taken together, our results suggest that the peak temperature of the afterglow band is indicative of regulatory processes affecting electron donation to the PQ pool which could involve phosphorylation of NDH. The afterglow thermoluminescence band provides a new and simple tool to investigate the cyclic electron transfer pathways and to study their regulation in vivo. 相似文献
Absorbance changes of ferredoxin measured at 463 nm in isolated thylakoids were shown to arise from the activity of the enzyme ferredoxin-plastoquinone reductase (FQR) in cyclic electron transport. Under anaerobic conditions in the presence of DCMU and an appropriate concentration of reduced ferredoxin, a light-induced absorbance decrease due to further reduction of Fd was assigned to the oxidation of the other components in the cyclic pathway, primarily plastoquinone. When the light was turned off, Fd was reoxidised and this gave a direct quantitative measurement of the rate of cyclic electron transport due to the activity of FQR. This activity was sensitive to the classical inhibitor of cyclic electron transport, antimycin, and also to J820 and DBMIB. Antimycin had no effect on Fd reduction although this was inhibited by stigmatellin. This provides further evidence that there is a quinone reduction site outside the cytochrome bf complex. The effect of inhibitors of ferredoxin-NADP+ reductase and experiments involving the modification of ferredoxin suggest that there may be some role for the reductase as a component of FQR. Contrary to expectations, NADPH2 inhibited FQR activity; ATP and ADP had no effect.Abbreviations AQS
9,10-anthraquinone-2-sulphonate
- DBMIB
2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethyl urea
- dimaleimide
N,N-p-phenylenedimaleimide
- EDC
N-(dimethylaminopropyl)-N-ethylcarbodiimide
- Fd
ferredoxin
- FNR
Fd-NADP+ oxidoreductase
- FQR
Fd-PQ reductase
- GME
glycine methyl ester
- J820
tetrabromo-4-hydroxypyridine
- PC
plastocyanin
- PMS
N-methylphenazinium methyl sulphate
- PS
Photosystems I and II
- PQ
plastoquinone
- Q
quinone
- Qr and Qo
sites of quinone reduction and oxidation, respectively
- sulpho-DSPD
disulphodisalicylidenepropane-1,2-diamine 相似文献
The variation of the rate of cyclic electron transport around Photosystem I (PS I) during photosynthetic induction was investigated
by illuminating dark-adapted spinach leaf discs with red + far-red actinic light for a varied duration, followed by abruptly
turning off the light. The post-illumination re-reduction kinetics of P700+, the oxidized form of the photoactive chlorophyll of the reaction centre of PS I (normalized to the total P700 content),
was well described by the sum of three negative exponential terms. The analysis gave a light-induced total electron flux from
which the linear electron flux through PS II and PS I could be subtracted, yielding a cyclic electron flux. Our results show
that the cyclic electron flux was small in the very early phase of photosynthetic induction, rose to a maximum at about 30 s
of illumination, and declined subsequently to <10% of the total electron flux in the steady state. Further, this cyclic electron
flow, largely responsible for the fast and intermediate exponential decays, was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethyl
urea, suggesting an important role of redox poising of the cyclic components for optimal function. Significantly, our results
demonstrate that analysis of the post-illumination re-reduction kinetics of P700+ allows the quantification of the cyclic electron flux in intact leaves by a relatively straightforward method. 相似文献
Photosystem II cyclic electron transport was investigated at low pH in spinach thylakoids and PS II preparations from the cyanobacteriumPhormidium laminosum. Variable fluorescence (Fv) quenching at a very low light intensity was examined as an indicator of cyclic electron flow. A progressive quenching of Fv was observed as the pH was lowered; however, this was shown to be mainly due to an inhibition of oxygen evolution. Cyclic electron flow in the uninhibited centres was estimated to occur at a rate comparable to or smaller than 1 mole O2 mg Chl–1 h–1 in the pH range 5.0 to 7.8.The quantum yeeld of oxygen production is known to decrease at low pH and has been taken to indicate cyclic electron flow (Crofts and Horton (1991) Biochim Biophys Acta 1058: 187–193). However, a direct all-or-none inhibition of oxygen production at low pH has also been reported (Meyer et al. (1989) Biochim Biophys Acta 974: 36–43). We have analysed the effects of light intensity on the rates of oxygen evolution in order to calculate U, the quantum yield of open and uninhibited centres. U was found to be constant over a broad pH range, and by using ferricyanide and phenyl-p-benzoquinone as electron acceptors the maximum possible rate of cyclic electron transport was equivalent to no more than 1 mole O2 mg Chl–1 h–1. The rate was no greater when the acceptor was adjusted to provide the most favourable conditions for cyclic flow. 相似文献
In chloroplasts, tetramethyl-p-hydroquinone supports high rates of phosphorylation-coupled, noncyclic electron flow through Photosystem I to methylviologen. The reaction is totally sensitive to dibromothymoquinone, indicating an electron donation to the plastoquinone region of the photosynthetic chain. The uncoupled electron flow rate exceeds 1000 μequivalents per hour per mg chlorophyll. The phosphorylation efficiency () at the optimal pH of 8 is 0.6–0.65. Presumably this ratio represents the efficiency of energy coupling in the electron transfer step plastoquinone → cytochrome f. 相似文献
Photosystem I-driven cyclic electron transport was measured in intact cells of Synechococcus sp PCC 7942 grown under different light intensities using photoacoustic and spectroscopic methods. The light-saturated capacity for PS I cyclic electron transport increased relative to chlorophyll concentration, PS I concentration, and linear electron transport capacity as growth light intensity was raised. In cells grown under moderate to high light intensity, PS I cyclic electron transport was nearly insensitive to methyl viologen, indicating that the cyclic electron supply to PS I derived almost exclusively from a thylakoid dehydrogenase. In cells grown under low light intensity, PS I cyclic electron transport was partially inhibited by methyl viologen, indicating that part of the cyclic electron supply to PS I derived directly from ferredoxin. It is proposed that the increased PSI cyclic electron transport observed in cells grown under high light intensity is a response to chronic photoinhibition.Abbreviations DBMIB
2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- ES
energy storage
- MV
methyl viologen
- PAm
photoacoustic thermal signal with strong non-modulated background light added
- PAs
photoacoustic thermal signal without background light added
CIW/DPB Publication No. 1205. 相似文献
Electron transport from Photosystem II to Photosystem I of spinach chloroplasts can be stimulated by bicarbonate and various carbonyl or carboxyl compounds. Monovalent or divalent cations, which have hitherto been implicated in the energy distribution between the two photosystems, i.e., spillover phenomena at low light intensities, show a similar effect under high light conditions employed in this study. A mechanism for this stimulation of forward electron transport from Photosystem II to Photosystem I could involve inhibition of two types of Photosystem II partial reactions, which may involve cycling of electrons around Photosystem II. One of these is the DCMU-insensitive silicomolybdate reduction, and the other is ferricyanide reduction by Photosystem II at pH 8 in the presence of dibromothymoquinone. Greater stimulation of forward electron transport reactions is observed when both types of Photosystem II cyclic reactions are inhibited by bicarbonate, carbonyl and carboxyl-type compounds, or by certain mono- or divalent cations.Abbreviations used: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea; DCIP, 2,6-dichloroindophenol; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; FeCN, potassium ferricyanide; MV, methylviologen; PS I, photosystem I; PS II, photosystem II; SM, silicomolybdic acid. 相似文献
Recent molecular genetics studies have revealed that cyclic electron transport around photosystem I is essential for normal photosynthesis and growth of plants. Chloroplastic NAD(P)H dehydorgenase (NDH) complex, a homologue of the complex I in respiratory electron transport, is involved in one of two cyclic pathways. Recent studies on the function and structure of the NDH complex are reviewed. 相似文献
Photosynthetic electron transport can involve either a linear flow from water to NADP, via Photosystems (PS) II and I or a cyclic flow just involving PSI. Little is known about factors regulating the relative flow through each of these pathways. We have examined photosynthetic electron transport through each system in plants of Arabidopsis thaliana in which either the PSI-D1 or PSI-E1 subunits of PSI have been knocked out. In both cases, this results in an imbalance in the turnover of PSI and PSII, such that PSII electron transport is limited by PSI turnover. Phosphorylation of light-harvesting complex II (LHCII) and its migration to PSI is enhanced but only partially reversible and not sufficient to balance photosystem turnover. In spite of this, cyclic electron flow is able to compete efficiently with PSI across a range of conditions. In dark-adapted leaves, the efficiency of cyclic relative to linear flow induced by far-red light is increased, implying that the limiting step of cyclic flow lies in the re-injection of electrons into the electron transport chain. Illumination of leaves with white light resulted in transient induction of a significant non-photochemical quenching in knockout plants which is probably high energy state quenching induced by cyclic electron flow. At high light and at low CO(2), non-photochemical quenching was greater in the knockout plants than in the wildtype. Comparison of PSI and PSII turnover under such conditions suggested that this is generated by cyclic electron flow around PSI. We conclude that, when the concentration of PSI is limiting, cyclic electron flow is still able to compete effectively with linear flow to maintain a high DeltapH to regulate photosynthesis. 相似文献
Photosynthetic electron transport can involve either a linear flow from water to NADP, via Photosystems (PS) II and I or a cyclic flow just involving PSI. Little is known about factors regulating the relative flow through each of these pathways. We have examined photosynthetic electron transport through each system in plants of Arabidopsis thaliana in which either the PSI-D1 or PSI-E1 subunits of PSI have been knocked out. In both cases, this results in an imbalance in the turnover of PSI and PSII, such that PSII electron transport is limited by PSI turnover. Phosphorylation of light-harvesting complex II (LHCII) and its migration to PSI is enhanced but only partially reversible and not sufficient to balance photosystem turnover. In spite of this, cyclic electron flow is able to compete efficiently with PSI across a range of conditions. In dark-adapted leaves, the efficiency of cyclic relative to linear flow induced by far-red light is increased, implying that the limiting step of cyclic flow lies in the re-injection of electrons into the electron transport chain. Illumination of leaves with white light resulted in transient induction of a significant non-photochemical quenching in knockout plants which is probably high energy state quenching induced by cyclic electron flow. At high light and at low CO2, non-photochemical quenching was greater in the knockout plants than in the wildtype. Comparison of PSI and PSII turnover under such conditions suggested that this is generated by cyclic electron flow around PSI. We conclude that, when the concentration of PSI is limiting, cyclic electron flow is still able to compete effectively with linear flow to maintain a high ΔpH to regulate photosynthesis. 相似文献
During photosynthesis, plants must control the utilization of light energy in order to avoid photoinhibition. We isolated an Arabidopsis mutant, pgr5 (proton gradient regulation), in which downregulation of photosystem II photochemistry in response to intense light was impaired. PGR5 encodes a novel thylakoid membrane protein that is involved in the transfer of electrons from ferredoxin to plastoquinone. This alternative electron transfer pathway, whose molecular identity has long been unclear, is known to function in vivo in cyclic electron flow around photosystem I. We propose that the PGR5 pathway contributes to the generation of a Delta(pH) that induces thermal dissipation when Calvin cycle activity is reduced. Under these conditions, the PGR5 pathway also functions to limit the overreduction of the acceptor side of photosystem I, thus preventing photosystem I photoinhibition. 相似文献
Chloroplast NAD(P)H dehydrogenase-like complex (NDH) plays a crucial role in the protection of plants against oxida- tive stress. In higher plants, NDH interacts with Photosystem I (PSI) to form an NDH-PSI supercomplex. However, the chloroplast supercomplex with NADPH oxidation activity remains to be identified. Here, we reported the identification of a supercomplex of NDH with NADPH-nitroblue tetrazo- fium oxidoreductase activity in the chloroplast of rice panicle. The active supercomplex from the panicle chloro- plast contained higher amounts of the NDH subunits (NdhH, NdhK, and NdhA) than that from the flag leaf chloroplast. The highly active supercomplex might underlie the high ac- tivity of the NADPH-dependent NDH pathway and the larger proton gradient across thylakoid membranes via cyclic electron flow around PSI, as well as the higher maximal photochemical efficiency of Photosystem II at the flowering to grain-filfing stage. The supercomplex is sug- gested to be essential for the high efficiency of photosynthesis and play a protective role in the grain formation in rice plant. 相似文献
The rate of electron transfer through Photosystem I (reduced 2,6-dichlorophenol indophenol (DCIPH2 → methylviologen) in a low-salt thylakoid suspension is inhibited by Mg2+ both under light-limited and the light-saturated conditions, the magnitude of inhibition being the same. The 2,6-dichlorophenol indophenol (DCIP) concentration dependence of the light-saturated rate in the presence and in the absence of Mg2+ shows that the overall rate constant of the photoreaction is not altered by Mg2+. With N,N,N′,N′-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethylphenylenediamine as electron donor only the light-limited rate, not the light-saturated rate, is inhibited by Mg2+ and the magnitude of inhibition is the same as with DCIP as donor. The results are interpreted in terms of heterogeneous Photosystem I, consisting of two types, PS I-A and PS I-B, where PS I-A is involved in cation-regulation of excitation energy distribution and becomes unavailable for DCIPH2 → methyl viologen photoelectron transfer in the presence of Mg2+. 相似文献
Signal I, the EPR signal of P-700, induced by long flashes as well as the rate of linear electron transport are investigated at partial inhibition of electron transport in chloroplasts. Inhibition of plastoquinol oxidation by dibromothymoquinone and bathophenanthroline, inhibition of plastocyanin by KCN and HgCl2, and inhibition by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide are used to study a possible electron exchange between electron-transport chains after plastoquinone. (1) At partial inhibition of plastocyanin the reduction kinetics of P-700+ show a fast component comparable to that in control chloroplasts and a new slow component. The slow component indicates P-700+ which is not accessible to residual active plastocyanin under these conditions. We conclude that P-700 is reduced via complexed plastocyanin. (2) The rate of linear electron transport at continuous illumination decreases immediately when increasing amounts of plastocyanin are inhibited by KCN incubation. This is not consistent with an oxidation of cytochrome f by a mobile pool of plastocyanin with respect to the reaction rates of plastocyanin being more than an order of magnitude faster than the rate-limiting step of linear electron transport. It is evidence for a complex between the cytochrome b6 - f complex and plastocyanin. The number of these complexes with active plastocyanin is concluded to control the rate-limiting plastoquinol oxidation. (3) Partial inhibition of the electron transfer between plastoquinone and cytochrome f by dibromothymoquinone and bathophenanthroline causes decelerated monophasic reduction of total P-700+. The P-700 kinetics indicate an electron transfer from the cytochrome b6 - f complex to more than ten Photosystem I reaction center complexes. This cooperation is concluded to occur by lateral diffusion of both complexes in the membrane. (4) The proposed functional organization of electron transport from plastoquinone to P-700 in situ is supported by further kinetic details and is discussed in terms of the spatial distribution of the electron carriers in the thylakoid membrane. 相似文献
Leaves of the C3 plant Brassica oleracea were illuminated with red and/or far-red light of different photon flux densities, with or without additional short pulses of high intensity red light, in air or in an atmosphere containing reduced levels of CO2 and/or oxygen. In the absence of CO2, far-red light increased light scattering, an indicator of the transthylakoid proton gradient, more than red light, although the red and far-red beams were balanced so as to excite Photosystem II to a comparable extent. On red background light, far-red supported a transthylakoid electrical field as indicated by the electrochromic P515 signal. Reducing the oxygen content of the gas phase increased far-red induced light scattering and caused a secondary decrease in the small light scattering signal induced by red light. CO2 inhibited the light-induced scattering responses irrespective of the mode of excitation. Short pulses of high intensity red light given to a background to red and/or far-red light induced appreciable additional light scattering after the flashes only, when CO2 levels were decreased to or below the CO2 compensation point, and when far-red background light was present. While pulse-induced light scattering increased, non-photochemical fluorescence quenching increased and F0 fluorescence decreased indicating increased radiationless dissipation of excitation energy even when the quinone acceptor QA in the reaction center of Photosystem II was largely oxidized. The observations indicate that in the presence of proper redox poising of the chloroplast electron transport chain cyclic electron transport supports a transthylakoid proton gradient which is capable of controlling Photosystem II activity. The data are discussed in relation to protection of the photosynthetic apparatus against photoinactivation.Abbreviations F, FM, F'M, F"M, F0, F'0
chlorophyll fluorescence levels
- exc
quantum efficiency of excitation energy capture by open Photosystem II
- PS II
quantum efficiency of electron flow through Photosystem II
- P515
field indicating rapid absorbance change peaking at 522 nm
- P700
primary donor of Photosystem I
- QA
primary quinone acceptor in Photosystem II
- QN
non-photochemical fluorescence quenching
- Qq
photochemical quenching of chlorophyll fluorescence 相似文献
The oxygen flash yield (YO2) and photochemical yield of PS II (PS II) were simultaneously detected in intact Chlorella cells on a bare platinum oxygen rate electrode. The two yields were measured as a function of background irradiance in the steady-state and following a transition from light to darkness. During steady-state illumination at moderate irradiance levels, YO2 and PS II followed each other, suggesting a close coupling between the oxidation of water and QA reduction (Falkowski et al. (1988) Biochim. Biophys. Acta 933: 432–443). Following a light-to-dark transition, however, the relationship between QA reduction and the fraction of PS II reaction centers capable of evolving O2 became temporarily uncoupled. PS II recovered to the preillumination levels within 5–10 s, while the YO2 required up to 60 s to recover under aerobic conditions. The recovery of YO2 was independent of the redox state of QA, but was accompanied by a 30% increase in the functional absorption cross-section of PS II (PS II). The hysteresis between YO2 and the reduction of QA during the light-to-dark transition was dependent upon the reduction level of the plastoquinone pool and does not appear to be due to a direct radiative charge back-reaction, but rather is a consequence of a transient cyclic electron flow around PS II. The cycle is engaged in vivo only when the plastoquinone pool is reduced. Hence, the plastoquinone pool can act as a clutch that disconnects the oxygen evolution from photochemical charge separation in PS II.Abbreviations ADRY
acceleration of the deactivation reactions of the water-splitting enzyme (agents)
- Chl
chlorophyll
- cyt
cytochrome
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- FO
minimum fluorescence yield in the dark-adapted state
- FI
minimum fluorescence yield under ambient irradiance or during transition from the light-adapted state
- FM
maximum fluorescence yield in the dark-adapted state
- FM
maximum fluorescence yield under ambient irradiance or during transition from light-adapted state
- FV, FV
variable fluorescence (FV=FM–FO ; FV=FM–FI)
- FRR
fast repetition rate (fluorometer)
- PS II
quantum yield of QA reduction (PS II=(FM – FO)/FM or PS II)=(FM= – FI=)/FM=)
- LHCII
Chl a/b light harvesting complexes of Photosystem II
- OEC
oxygen evolving complex of PS II
- P680
reaction center chlorophyll of PS II
- PQ
plastoquinone
- POH2
plastoquinol
- PS I
Photosystem I
- PS II
Photosystem II
- RC II
reaction centers of Photosystem II
- PS II
the effective absorption cross-section of PHotosystem II
- TL
thermoluminescence
- YO2
oxygen flash yield
The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. 相似文献
Redox regulation of chloroplast proteins is necessary to adjust photosynthetic performance with changes in light. The thioredoxin (Trx) system plays a central role in this process. Chloroplast-localized classical Trx is a small redox-active protein that regulates many target proteins by reducing their disulfide bonds in a light-dependent manner. Arabidopsis thaliana mutants lacking f-type Trx (trx f1f2) or m-type Trx (trx m124-2) have been reported to show delayed reduction of Calvin cycle enzymes. As a result, the trx m124-2 mutant exhibits growth defects. Here, we characterized a quintuple mutant lacking both Trx f and Trx m to investigate the functional complementarity of Trx f and Trx m. The trx f1f2 m124-2 quintuple mutant was newly obtained by crossing, and is analyzed here for the first time. The growth defects of the trx m124-2 mutant were not enhanced by the lack of Trx f. In contrast, deficiencies of both Trxs additively suppressed the reduction of Calvin cycle enzymes, resulting in a further delay in the initiation of photosynthesis. Trx f appeared to be necessary for the rapid activation of the Calvin cycle during the early induction of photosynthesis. To perform effective photosynthesis, plants seem to use both Trxs in a coordinated manner to activate carbon fixation reactions. In contrast, the PROTON GRADIENT REGULATION 5 (PGR5)-dependent cyclic electron transport around photosystem I was regulated by Trx m, but not by Trx f. Lack of Trx f did not affect the activity and regulation of the PGR5-dependent pathway. Trx f may have a higher specificity for target proteins, whereas Trx m has a variety of target proteins to regulate overall photosynthesis and other metabolic reactions in the chloroplasts.