首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of animal segmentation, the periodic repetition of anatomical structures along the anteroposterior axis, is a long-standing issue that has been recently revived by comparative developmental genetics. In particular, a similar extensive morphological segmentation (or metamerism) is commonly recognized in annelids and arthropods. Mostly based on this supposedly homologous segmentation, these phyla have been united for a long time into the clade Articulata. However, recent phylogenetic analysis dismissed the Articulata and thus challenged the segmentation homology hypothesis. Here, we report the expression patterns of genes orthologous to the arthropod segmentation genes engrailed and wingless in the annelid Platynereis dumerilii. In Platynereis, engrailed and wingless are expressed in continuous ectodermal stripes on either side of the segmental boundary before, during, and after its formation; this expression pattern suggests that these genes are involved in segment formation. The striking similarities of engrailed and wingless expressions in Platynereis and arthropods may be due to evolutionary convergence or common heritage. In agreement with similarities in segment ontogeny and morphological organization in arthropods and annelids, we interpret our results as molecular evidence of a segmented ancestor of protostomes.  相似文献   

2.
The long held view that annelids and arthropods are closely related (Articulata) has been challenged recently by phylogenetic analyses using molecular data. The outcome of these studies is a clade of moulting animals (Ecdysozoa) comprising arthropods and some taxa of the nemathelminth worms. Monophyly of the Ecdysozoa has not yet been shown convincingly on morphological evidence, but is strongly supported by molecular data. The implication of the Ecdysozoa hypothesis is that the type of segmentation found in annelids and arthropods must be either convergent or an ancestral feature of protostomes or even bilaterians. The present review discusses aspects of segmentation in annelids and arthropods at the genetic, cellular, morphogenetic and morphological levels. Based on numerous similarities not shared with other bilaterian taxa it is suggested that segmentation of annelids and arthropods is homologous and apomorphic for a monophyletic Articulata. However, the challenge provided by the molecular analyses should stimulate research programmes gaining more data such as on additional genes, cleavage patterns, molecular developmental biology, and the comparison of nervous systems at the level of single neurons.  相似文献   

3.
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.  相似文献   

4.
5.
The segmented urbilateria: a testable scenario   总被引:1,自引:0,他引:1  
The idea that the last common ancestor of bilaterian animals(Urbilateria) was segmented has been raised recently on evidencecoming from comparative molecular embryology. Leaving asidethe complex debate on the value of genetic evidence, the morphologicaland developmental evidence in favor of a segmented Urbilateriaare discussed in the light of the emerging molecular phylogenyof metazoans. Applying a cladistic character optimization procedureto the question of segmentation is vastly complicated by theproblem of defining without ambiguity what segmentation is andto what taxa this definition applies. An ancestral segmentationmight have undergone many complex derivations in each differentphylum, thus rendering the cladistics approaches problematic.Taking the most general definitions of coelom and segmentationhowever, some remarkably similar patterns are found across thebilaterian tree in the way segments are formed by the posterioraddition of mesodermal segments or somites. Postulating thatthese striking similarities in mesodermal patterns are ancestral,a scenario for the diversification of bilaterians from a metamericancestor is presented. Several types of evolutionary mechanisms(specialization, tagmosis, progenesis) operating on a segmentedancestral body plan would explain the rapid emergence of bodyplans during the Cambrian. We finally propose to test this hypothesisby comparing genes involved in mesodermal segmentation.  相似文献   

6.
Understanding the evolutionary origins of segmented body plans in the metazoa has been a long-standing fascination for scientists. Competing hypotheses explaining the presence of distinct segmented taxa range from the suggestion that all segmentation in the metazoa is homologous to the proposal that segmentation arose independently many times, even within an individual clade or species. A major new source of information regarding the extent of homology vs. homoplasy of segmentation in recent years has been an examination of the extent to which molecular mechanisms underlying the segmentation process are conserved, the rationale being that a shared history will be apparent by the presence of common molecular components of a developmental program that give rise to a segmented body plan. There has been substantial progress recently in understanding the molecular mechanisms underlying the segmentation process in many groups, specifically within the three overtly segmented phyla: Annelida, Arthropoda and Chordata. This review will discuss what we currently know about the segmentation process in each group and how our understanding of the development of segmented structures in distinct taxa have influenced the hypotheses explaining the presence of a segmented body plan in the metazoa.  相似文献   

7.
The vertebrate segmentation clock was identified 10 years ago as a molecular oscillator associated with the rhythmic production of embryonic somites. Since then, three major signaling pathways--Notch, FGF, and Wnt--have been shown to be activated periodically during segmentation and proposed to constitute the clockwork of the system. However, recent results from zebrafish embryonic studies demonstrate that Notch signaling is involved in the coupling of oscillations among cells rather than in the pacemaker of the oscillator. Furthermore, genetic analyses in mouse indicate that Wnt and FGF play only a permissive role in the control of the oscillations. Therefore, the nature of the segmentation clock pacemaker still remains elusive.  相似文献   

8.
Both the collagen-like and the globular fragments of a subcomponent C1q of the first component of bovine and human complement were highly purified by enzymic digestion followed by gel filtration. Analyses by polyacrylamide gel electrophoresis showed that the former was composed of covalently linked peptide chains with an average molecular weight of 14 000, and that the latter was composed of three non-covalently linked peptide chains each having a molecular weight of approximately 15 000. Great similarities between amino acid compositions of the globular fragments and some similarities between those of the collagen-like fragments were found. Moreover, great similarities of amino acid compositions were found among three non-covalently linked chains of each globular fragment as well as between the corresponding chains of both globular fragments. These results suggested that both the collagen-like and the globular domains on the C1q molecule remained highly conserved in its evolution.  相似文献   

9.
Arthropod limbs are arguably the most diverse organs in the animal kingdom. Morphological diversity of the limbs is largely based on their segmentation, because this divides the limbs into modules that can evolve separately for new morphologies and functions. Limb segmentation also distinguishes the arthropods from related phyla (e.g. onychophorans) and thus forms an important evolutionary innovation in arthropods. Understanding the genetic basis of limb segmentation in arthropods can thus shed light onto the mechanisms of macroevolution and the origin of a character (articulated limbs) that defines a new phylum (arthropods). In the fly Drosophila limb segmentation and limb growth are controlled by the Notch signaling pathway. Here we show that the Notch pathway also controls limb segmentation and growth in the spider Cupiennius salei, a representative of the most basally branching arthropod group Chelicerata, and thus this function must trace from the last common ancestor of all arthropods. The similarities of Notch and Serrate function between Drosophila and Cupiennius are extensive and also extend to target genes like odd-skipped, nubbin, AP-2 and hairy related genes. Our data confirm that the jointed appendages, which are a morphological phylotypic trait of the arthropods and the basis for naming the phylum, have a common developmental genetic basis. Notch-mediated limb segmentation is thus a molecular phylotypic trait of the arthropods.  相似文献   

10.
Arthropods, vertebrates, and annelids all have a segmented body. Our recent discovery of involvement of Notch-signalling in spider segmentation revived the discussion on the origin of segmented body plans and suggests the sharing of a common genetic program in a common ancestor. Here, we analysed the spider homologues of the Suppressor of Hairless and Presenilin genes, which encode components of the canonical Notch-pathway, to further explore the role of Notch-signalling in spider segmentation. RNAi silencing of two spider Suppressor of Hairless homologues and the spider Presenilin homologue causes severe segmentation phenotypes. The most prominent defect is the consistent breakdown of segmentation after the formation of three (Suppressor of Hairless) or five (Presenilin) opisthosomal segments. These phenotypes indicate that Notch-signalling during spider segmentation likely involves the canonical pathway via Presenilin and Suppressor of Hairless. Furthermore, it implies that Notch-signalling influences both the formation and patterning of the spider segments: it is required for the specification of the posterior segments and for proper specification of the segment boundaries. We argue that alternative, partly redundant, pathways might act in the formation of the anterior segments that are not active in the posterior segments. This suggests that at least some differences exist in the specification of anterior and posterior segments of the spider, a finding that may be valid for most short germ arthropods. Our data provide additional evidence for the similarities of Notch-signalling in spider segmentation and vertebrate somitogenesis and strengthen our previous notion that the formation of the segments in arthropods and vertebrates might have shared a genetic program in a common ancestor.  相似文献   

11.
Segmentation is unquestionably a major factor in the evolution of complex body plans, but how this trait itself evolved is unknown. Approaching this problem requires comparing the molecular mechanisms of segmentation in diverse segmented and unsegmented taxa. Notch/Hes signaling is involved in segmentation in sequentially segmenting vertebrates and arthropods, as judged by patterns of expression of one or more genes in this network and by the disruption of segmental patterning when Notch/Hes signaling is disrupted. We have previously shown that Notch and Hes homologs are expressed in the posterior progress zone (PPZ), from which segments arise, in the leech Helobdella robusta, a sequentially segmenting lophotrochozoan (phylum Annelida). Here, we show that disrupting Notch/Hes signaling disrupts segmentation in this species as well. Thus, Notch/Hes functions in either the maintenance of the PPZ and/or the patterning processes of segmentation in representatives of all three superphyla of bilaterally symmetric animals. These results are consistent with two evolutionary scenarios. In one, segmentation was already present in the ancestor of all three superphyla. In the other, Notch/Hes signaling functioned in axial growth by terminal addition in an unsegmented bilaterian ancestor, and was subsequently exapted to function in segmentation as that process evolved independently in two or more taxa.  相似文献   

12.
The origin and evolution of segmentation   总被引:1,自引:0,他引:1  
Arthropods, annelids and chordates all possess segments. It remains unclear, however, whether the segments of these animals evolved independently or instead were derived from a common ancestor. Considering this question involves examining not only the similarities and differences in the process of segmentation between these phyla, but also how this process varies within phyla, where the homology of segments is generally accepted. This article reviews what is known about the segmentation process and considers various proposals to explain its evolution.  相似文献   

13.
Arthropods, annelids and chordates all possess segments. It remains unclear, however, whether the segments of these animals evolved independently or instead were derived from a common ancestor. Considering this question involves examining not only the similarities and differences in the process of segmentation between these phyla, but also how this process varies within phyla, where the homology of segments is generally accepted. This article reviews what is known about the segmentation process and considers various proposals to explain its evolution.  相似文献   

14.
The origin and evolution of segmentation   总被引:5,自引:0,他引:5  
Arthropods, annelids and chordates all possess segments. It remains unclear, however, whether the segments of these animals evolved independently or instead were derived from a common ancestor. Considering this question involves examining not only the similarities and differences in the process of segmentation between these phyla, but also how this process varies within phyla, where the homology of segments is generally accepted. This article reviews what is known about the segmentation process and considers various proposals to explain its evolution.  相似文献   

15.
Image segmentation is an important early stage in visual processing in which the visual system groups together parts of the image that belong together, prior to or in conjunction with object recognition. Two principal processes may be involved in image segmentation: an edge-based process that uses feature contrasts to mark boundaries of coherent regions, and a region-based process that groups similar features over a larger scale. Earlier, we have shown that motion and colour interact strongly in image segmentation by the human visual system. Here we explore the nature of this interaction in terms of edge- and region-based processes. We measure performance on a region-based colour segmentation task in the presence of distinct types of motion information, in the form of edges and regions which in themselves do not reveal the location of the colour target. The results show that both motion edges and regions may guide the integrative process required for this colour segmentation task. Motion edges appear to act by delimiting areas over which to integrate colour information, whereas motion similarities define primitive surfaces within which colour grouping and segmentation processes are deployed.  相似文献   

16.
The polypeptides of three paramyxoviruses (simian virus 5, Newcastle disease virus, and Sendai virus) were separated by polyacrylamide gel electrophoresis. Glycoproteins were identified by the use of radioactive glucosamine as a carbohydrate precursor. The protein patterns reveal similarities among the three viruses. Each virus contains at least five or six proteins, two of which are glycoproteins. Four of the proteins found in each virus share common features with corresponding proteins in the other two viruses, including similar molecular weights. These four proteins are the nucleocapsid protein (molecular weight 56,000 to 61,000), a larger glycoprotein (molecular weight 65,000 to 74,000), a smaller glycoprotein (molecular weight 53,000 to 56,000), and a major protein which is the smallest protein in each virion (molecular weight 38,000 to 41,000).  相似文献   

17.
Peel A  Akam M 《Current biology : CB》2003,13(18):R708-R710
Recent work has revealed striking similarities in the genetic mechanisms underpinning somitogenesis in zebrafish and segmentation in the spider. Could this mean that the bilaterian common ancestor was segmented after all?  相似文献   

18.
The molecular basis of segmentation and regional growth during morphogenesis of Drosophila legs is poorly understood. We show that four-jointed is not only required for these processes, but also can direct ectopic growth and joint initiation when its normal pattern of expression is disturbed. These effects are non-autonomous, consistent with our demonstration of both transmembrane and secreted forms of the protein in vivo. The similarities between four-jointed and Notch phenotypes led us to further investigate the relationships between these pathways. Surprisingly, we find that although four-jointed expression is regulated downstream of Notch activation, four-jointed can induce expression of the Notch ligands, Serrate and Delta, and may thereby participate in a feedback loop with the Notch signaling pathway. We also show that four-jointed interacts with abelson, enabled and dachs, which leads us to suggest that one target of four-jointed signaling is the actin cytoskeleton. Thus, four-jointed may bridge the gap between the signals that direct morphogenesis and those that carry it out.  相似文献   

19.
Interstitial marine meiofaunal worms of the genus Diurodrilus have always been considered part of Annelida, either as basal or derived, though generally with reference to Dinophilidae. New evidence shows that Diurodrilus has a unique anatomy, and lacks key annelid features, possibly even segmentation. We assessed the systematic position of Diurodrilus among other protostome animals via light microscopy, confocal laser scanning microscopy, and transmission electron microscopy studies of anatomy, focusing on musculature, the nervous system, as well as molecular sequence data. We show that there is little morphological or molecular evidence to support a relationship with Dinophilidae or any other annelids. Diurodrilus has some similarities to Micrognathozoa, though the latter shows complex jaws. On the basis of the configuration of the nervous system and the cuticle we regard Diurodrilus to belong to Spiralia, possibly close to Annelida; however, until further evidence is acquired it should be regarded as incertae sedis in this large animal clade. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Mass Spectrometric Imaging (MSI) is a molecular imaging technique that allows the generation of 2D ion density maps for a large complement of the active molecules present in cells and sectioned tissues. Automatic segmentation of such maps according to patterns of co-expression of individual molecules can be used for discovery of novel molecular signatures (molecules that are specifically expressed in particular spatial regions). However, current segmentation techniques are biased toward the discovery of higher abundance molecules and large segments; they allow limited opportunity for user interaction, and validation is usually performed by similarity to known anatomical features. We describe here a novel method, AMASS (Algorithm for MSI Analysis by Semi-supervised Segmentation). AMASS relies on the discriminating power of a molecular signal instead of its intensity as a key feature, uses an internal consistency measure for validation, and allows significant user interaction and supervision as options. An automated segmentation of entire leech embryo data images resulted in segmentation domains congruent with many known organs, including heart, CNS ganglia, nephridia, nephridiopores, and lateral and ventral regions, each with a distinct molecular signature. Likewise, segmentation of a rat brain MSI slice data set yielded known brain features and provided interesting examples of co-expression between distinct brain regions. AMASS represents a new approach for the discovery of peptide masses with distinct spatial features of expression. Software source code and installation and usage guide are available at http://bix.ucsd.edu/AMASS/ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号