首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adventitious shoot regeneration of twenty-four pear genotypes was compared in a common in vitro shoot induction and development protocol. This study also compared cultures newly established from scionwood with cultures that been in long-term cold storage. In vitro cultures of 13 Pyrus genotypes and budwood from 23 Pyrus genotypes were obtained from the National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon. With the exception of one genotype of P. elaeagrifolia Pall., and ‘Ya Li’ (P. pyrifolia var. sinensis Teng & Tanabe), all were P. communis L. cultivars. The basal shoot induction media consisted of Chevreau and Leblay (CL) basal nutrients, vitamins, and organics (Chevreau and Leblay in Acta Hortic 336: 263–268, 1993). The analysis of variance indicated that differences among genotypes were highly significant and the main effect of culture origin was non-significant. However, there was a significant interaction between genotype and culture origin, with percentage regeneration of ‘Abate Fetel’ from new budwood significantly greater than that from long-term in vitro cultures, while ‘Jesinji Vodenac’ cultures derived from the old NCGR cultures regenerated significantly more adventitious shoots. The ranges of mean regeneration frequency were similar for both in vitro (0–87.7%) and scionwood-derived cultures (0–70.7%). Maximum regeneration was observed for ‘Conference’, followed by ‘Magness’, ‘Dr. Jules Guyot’, and Packham’s Triumph’. The range of number of adventitious shoots was relatively narrow, with the minimum of 1.0 for seven genotypes to 2.2 for ‘Conference’.  相似文献   

2.
The study was aimed primarily at cleansing the in vitro-decline displaying long-term micropropagated triploid watermelon ‘Arka Manik’ cultures from covert bacteria and their further field testing. Disinfectant treated shoots showed endophytic survival but to a lesser extent in shoot-tips. Culturing the NaOCl (5 min) treated shoot-tips on filter paper bridges in liquid watermelon medium containing single antibiotic (gentamycin (Gm), amoxycillin (Ax) or cefazolin (Cz) at 50, 250, 500 or 1000 mg l−1) for 1 month followed by repeated indexing of medium and tissue for two-four subculture passages facilitated the cleansing of cultures with 12.5% recovery as monitored for 2 years. Partial bleaching damage by NaOCl, phytotoxicity to higher levels of antibiotics, poor growth response in the initial sucrose-free medium and rampant hyperhydricity came in the way of a higher recovery. The effectiveness of the above approach was ascertained after back inoculating clean cultures with a mixture of Gram-positive and Gram-negative bacteria yielding 30, 45 and 35% clean cultures in Gm, Ax and Cz (250 mg l−1 for 1 month) treatments, respectively in modified medium compared with 10% recovery after mere HgCl2 surface sterilization. The results indicated that antibiotic treatment was essential but not its choice, and extended culture-indexing subsequent to disinfection or antibiotic treatment was crucial in identifying clean stocks. Cleansed cultures, showed restoration of growth but a drop in rooting. Most of the in vitro cultures appeared normal and true-to-type during the 7–10 year period in vitro but a small proportion of bacteria-harboring stocks displayed ‘epigenetic variations’. Acclimatized plants and those in the field also appeared true-to-type but for a minor proportion derived from bacteria-harboring stocks. Field-plants which originated from bacteria-freed stocks after 9 years of continuous culturing were normal and fertile validating the possibility of keeping treasured cultures in vitro for long periods if covert contaminants are checked.  相似文献   

3.
Summary An efficient and simple plant regeneration system via organogenesis from leaf segments of persimmon (Diospyros kaki Thunb.) cultivars ‘Fuyu’ and ‘Nishimurawase’ has been developed. The regeneration capacity was influenced by the culture vessels, gelling agents, plant growth regulators, and light conditions. Leaf explants taken from in vitro shoots were cultured on a modified Murashige and Skoog medium (MS1/2N), for 16 wk without transfer to fresh medium. Adventious shoots appeared after 4 and 8 wk in culture of ‘Nishimurawase’ and ‘Fuyu’ tissues, respectively. The culture of leaf explants in Erlenmeyer flasks with medium containing 4 g l−1 agar enhanced shoot formation in comparison to media with increased agar concentrations. Optimal shoot regeneration was obtained with 5 mg l−1 (22.8 μM) zeatin and 0.1 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for ‘Nishimurawase’, and 10 mg l−1 (45.6 μM) zeatin and 0.1 mg l−1 (0.05 μM) IBA for ‘Fuyn’. Shoot regeneration frequencies in both cultivars were 100%, and shoot numbers per explant reached up to 9.2 for ‘Nishimurawase’ and 2.2 for ‘Fuyu’. Dark incubation during the first 4–5 wk was the most effective condition to successfully influence shoot regeneration in both cultivars. While dark incubation was essential for adventitious shoot formation by ‘Fuyu’, it was only slightly beneficial to ‘Nishimurawase’. More than 80% of the regenerated shoots rooted within 4 wk on hormone-free MS1/2N demium after having been dipped for 30 s in 250 mg l−1 (1.1. mM) IBA solution.  相似文献   

4.
When an indigenous insect becomes a pest, comparisons of performance of pest and non-pest populations on crop plants and of genetic variation in that performance may provide insight into the evolution of pest populations. To measure such genetic variation, 8–15 clones of the grape phylloxera (Daktulosphaira vitifoliae Fitch) were collected from wild grapevines in each of 3 geographically isolated sites (populations) and from commercial vineyards in northern California. A complete life table was made for clonal replicates from populations collected from wild grapevines on each of two commercial grape cultivars, the susceptibleVitis vinifera (L.) cultivar Cabernet Sauvignon, and the phylloxera-resistant rootstock ‘AxR # 1’. Variation in mean performance on these two hosts was partitioned among clones within collection sites and among sites. Performance measures included an individual analog to the intrinsic rate of increase (r), age at first oviposition, fecundity in the first ten days of reproduction, total fecundity, and longevity. The overall performance of phylloxera from the wild grapevines on the resistant cultivar AxR # 1 was greater than or equal to that on the susceptible cultivar Cabernet Sauvignon. There was significant variation among clones within populations from wild grapes in the rate of increase on ‘AxR # 1’ and marginally significant clonal variation in some of the component paramters. There was no significant variation among clones within populations on ‘Cabernet Sauvignon’ and no significant differences between populations on either crop in any trait. In a second experiment we compared the relative performance of 15–17 clones from wild grapevines and from commercial vineyards when reared on ‘Cabernet Sauvignon’ and ‘AxR # 1’. Phylloxera from commercial vineyards had much higher overall performance on ‘Cabernet Sauvignon’ than did phylloxera from the wild grapevines. Phylloxera from the commercial vineyard also had higher performance on ‘Cabernet Sauvignon’ than on ‘AxR′ 1’ but the performance of the phylloxera from wild and commercial grapes did not differ on ‘AxR # 1’. Our results show that there is genetic variation in traits related to performance on a resistant rootstock within these indigenous non-pest populations of phylloxera, but not among them. The pattern of performance of pest and non-pest populations on two commercial cultivars suggests that current levels of phylloxera performance on crop cultivars are the result of adaptation to those cultivars which has occurred while phylloxera has been associated with viticulture. Implications of these results for understanding the recent adaptation of phylloxera to ‘AxR # 1’ in California are also discussed.  相似文献   

5.
According to the approach developed by Thomas A. Sebeok (1921–2001) and his ‘global semiotics,’ semiosis and life converge. This leads to his cardinal axiom: ‘semiosis is the criterial attribute of life.’ His global approach to sign life presupposes his critique of anthropocentrism and glottocentrism. Global semiotics is open to zoosemiotics, indeed, even more broadly, biosemiotics which extends its gaze to semiosis in the whole living universe to include the realms of macro- and microorganisms. In Sebeok’s conception, the sign science is not only the study of communication in culture, but of communicative behaviour from a biosemiotic perspective.  相似文献   

6.
This study was taken up with a view to generate basic information on spore hardiness to ethanol in various Bacillus species and related genera, and to assess the effectiveness of different levels of ethanol as a bacterial disinfectant. Predominantly spore-bearing cultures of five Bacillus spp. (B. pumilus, B. subtilis, B. megaterium, B. fusiformis and B. flexus) that were isolated from the spent-alcohol used during plant tissue culture work were challenged with aqueous ethanol (25, 50, 60, 70, 80 and 90% v/v) in 1 ml volumes at 1010−11 CFU ml−1. Monitoring the spore endurance through spotting and plating revealed prolonged tolerance (>12 months) at different alcohol levels depending on the organism except in 90% where no survival was observed beyond 2–12 months. Spores of related genera like Paenibacillus and Lysinibacillus also showed long-term ethanol survival. Alcohol tolerance of spore-forming organisms depended on the extent of spores and spore hardiness, which in turn varied with the organism, strain, age of culture, growing conditions and other factors as authenticated with ATCC strains of B. pumilus and B. subtilis. Aqueous 90% ethanol caused instant inactivation of vegetative cells in different spore formers and twelve other non-sporulating Gram-positive and Gram-negative organisms tested. Taking into account both vegetative cells and spores, the appropriate concentration of ethanol as a disinfectant emerged to be 90% followed by absolute ethanol compared with the generally recommended 70–80% level.  相似文献   

7.
8.
Embryogenic cell suspensions of Musa AAA and AAB genomic groups were cultured in a maintenance culture medium for 17 generations (lasting for 238 days). The cell growth phases and medium pH changes were also observed correspondingly. Three major growth phases of AAA genomic group have been focused, namely cell releasing, proliferation and globularization phases. During almost all the subculture generations the cell stocks of AAB ‘Raja’ were continuously characterized by proliferating cell aggregates while the globularization phase occurred only for short duration. The medium acidity levels of the cell stocks of AAA ‘Pei-Chiao’ and ‘Robusta’ were commonly scattered in a wider range of pH 3.3–5.3, while the AAB ‘Raja’ were deviated in a narrow range of pH 4.0–4.6. After subculture, culture medium showed biphasic pH changes, which were drastic pH falls followed by an auto-regulated steady-state level. The steady-state pH values in each of the three growth phases (i.e. cell releasing, proliferation and globularization phases) were of 3.3–4.0, 4.0–4.8 and 4.8–5.3 respectively. Morphological bipolarity and the efficiency in the formation of somatic embryos have been thoroughly discussed. Reported research indicates that the condition of pH below 4.6 may prevent the development of embryogenic cells towards polar growth.  相似文献   

9.
Summary Micropropagated grape (Vitis vinifera L.) cv. Arka Neelamani cultures showed a decline in root and shoot growth performance after 6–7 yr of continuous in vitro culture. Indexing the culture medium using nutrient agar or 523 bacteriological medium (Viss et al., 1991) revealed covert bacteria in 75–100% cultures. Testing the tissue from different parts of in vitro plantlets on nutrient agar showed bacteria comprising of six or more morphotypes in 100% of root and collar tissue samples but less frequently in stem segments. The shoot tips had the lowest incidence of bacterial association. The whole shoots treated with NaOCl (4% chlorine) or HgCl2 (0.1%) showed endophytic bacterial survival. Culturing the HgCl2-treated (5 min) shoot tips on antibiotic overlaid medium (1 ml of 50 mg l−1 gentamycin and/or cefazolin) in culture tubes (150×25 mm) for 1 mo. facilitated the cleansing of cultures with 75% recovery of contaminant-free shoots as monitored through indexing for the next 2 yr. Repeated indexing of medium and tissue from various plant parts during the first two to four subculture cycles following antibiotic treatment was instrumental in reliably identifying clean cultures and preventing bacterial re-emergence. Antibiotic incorporation in the medium was detrimental to grape microcuttings. Bacteria-freed cultures showed 80–100% rooting and a high number of plantlets that could be acclimatized. The plants put in the field after 8 yr of active micropropagation showed some juvenile characteristics initially, which disappeared in 6–8 mo., and the pruned shoots showed flowering and bunch development within 1 yr of field planting. This indicated the feasibility of keeping grape plants in vitro for long periods if covert microbes were eliminated.  相似文献   

10.
Exploring the source of quiescent bacteria in tissue-cultured bananas (Musa sp.) we demonstrate here through a combination of bacterial 16S rDNA-based molecular technique, light microscopy and cultivation-based approaches the ubiquitous presence of endophytic bacteria in the field shoots of different genotypes (Grand Naine, Robusta, Dwarf Cavendish, Ney Poovan and exotic accessions) and their widespread prevalence in apparently clean tissue cultures. A portion of field shoot-tips (10–60%) showed cultivable endophytes, especially during rainy season, yielding 102–105 colony forming units g−1 fresh tissue in ‘Grand Naine’, which overtly expressed on tissue culture medium as well. The rest showed no colony development on diverse bacteriological media but proved PCR+ve to bacterial primers indicating the presence of normally non-culturable organisms, which was endorsed by microscopic observations. Such endophytes gradually turned cultivable rendering all visibly clean cultures as quiescent bacteria-harboring after a few (2–4) to several (8–20) passages, resulting in as much as 1.7 × 105 – 4.0 × 107 colony forming units g−1 tissue of ‘Grand Naine’ after ten passages, yielding different organisms. This study has thus exposed the ubiquitous and intense association existing between endophytes and bananas, including their quiescent survival in suspension cultures. The effect due to quiescent bacteria in micropropagated stocks could not be generalized. The observations question the fundamental principle of asepsis in plant tissue cultures and bring in new information on plant-endophtye association in vitro with implications in micropropagation, germplasm conservation, cell culture studies and molecular profiling. The possible involvement of unsuspected endophytic bacteria in tissue-culture associated phenomena like habituation and epigenetic and somaclonal variations are discussed.  相似文献   

11.
12.
Summary An in vitro protocol has been developed for callus indiction, somatic embryogenesis, and plant regeneration from stigma-style culture of grapevine. Four different grapevine cultivars (Vitis vinifera L.: cvs. ‘Bombino Nero’, ‘Greco di Tufo’, ‘Merlot’, and ‘Sangiovese’) were tested. Exlants were cultured on Nitsch and Nitsch medium (NN) supplemented with various combinations of 6-benzylaminopurine (BA: 4.5 and 9.0 μM) and β-naphthoxyacetic acid (NOA; 5.0 and 9.9 μM). Sucrose (88 mM) was used as the carbon source. Somatic embryogenesis was induced within 3–7 mo. after culture initiation. Even though explants of different origin (unfertilized ovules and anthers) regenerated somatic embryos, the higher embryogenic potential was observed in stigma and style explants, with the exception of ‘Merlot’, which regenerated somatic embryos only from unfertilized ovules. The percentages of stigma-style explants producing somatic embryos was 7% in ‘Bombino Nero’ (cultured on NN medium supplemented 9.0 μM BA and 9.9 μM NOA). 14% in ‘Greco di Tufo’ (4.5 μM BA and 9.9 μM NOA), and 8% in ‘Sangiovese’ (9.0 μM BA and 9.9 μM NOA). The presence of growth regulators (BA and NOA) in the medium was essential for induction of somatic embryogenesis. Plants were regenerated on hormone-free NN medium containing 88 mM sucrose.  相似文献   

13.
Sulfur is the oldest and most widely used fungicide in the vineyards of California, where it is used for control of powdery mildew (Uncinula necator [Schw.] Burr). For decades, sulfur use has been associated with outbreaks of Tetranychus pacificus McGregor (Acari: Tetranychidae) on cultivated grapes in the San Joaquin Valley. I undertook large-scale field studies to test this association, to evaluate the impact of sulfur on Galendromus occidentalis (Nesbit) (Acari: Phytoseiidae), a major predator of T. pacificus, and to determine if timing of sulfur applications with respect to grape bloom has an impact on T. pacificus density. The studies took place in a 32 ha vineyard in Fresno County, and all fungicide applications were made with commercial-scale equipment. In 1998 a ‘high sulfur’ treatment, a combination of wettable sulfur and sulfur dust, was compared to ‘low sulfur,’ in which demethylation inhibitor (DMI) fungicides partially substituted for sulfur. In 1999 treatments were ‘sulfur,’ ‘DMI,’ ‘sulfur pre-bloom’ (here sulfur was applied prior to grape bloom, in late May, and then DMIs were applied until mid-season) and ‘sulfur post-bloom’ (the reverse of ‘sulfur pre-bloom’). In each year, the T. pacificus population increase came after the end of fungicide applications, and results clearly show a relationship between sulfur use and T. pacificus density. In 1998, mean T. pacificus density was 2.7 times higher and mean G. occidentalis density 2.5 times higher in ‘high sulfur’ compared to ‘low sulfur.’ In 1999, the highest T. pacificus counts were in the ‘sulfur’ and ‘sulfur pre-bloom’ treatments, 4.8 times higher than ‘sulfur post-bloom’ and 2 times higher than ‘DMIs.’ Density of G. occidentalis was 2.3 times as high in ‘sulfur’ or ‘sulfur pre-bloom’ than ‘DMIs.’ The predator/prey ratio was not significantly different among treatments in 1998, but in 1999 it was highest in the ‘sulfur pre-bloom’ treatment. In 1999, density of Homeopronematus anconai (Baker) (Acari: Tydeidae) was 2.7 times higher in ‘sulfur pre-bloom’ compared to ‘sulfur,’ and higher by 2.7 times in ‘DMI’ compared to ‘sulfur post-bloom,’ suggesting a negative effect of sulfur on this tydeid. These results do not support the hypotheses that the cause of the increase in T. pacificus density is due to negative effects of sulfur on phytoseiids or tydeids. Rather, it appears that a plant-based explanation is likely, first, because of the differences in pre-bloom versus post-bloom sulfuring, and second, because of the long lag time between the end of the sulfur applications and the corresponding increase in spider mite density.  相似文献   

14.
Summary Agitated layers of liquid medium were created on platform shakers in jars with 25–30 ml of medium (similar to conventional agar culture) rotating at 90 rpm. Thin films were scaled up in larger rectangular vessels on tilted shelves that periodically rock. In jars of liquid medium with a density of 180 explants per liter, multiplication rates of Hota tokudama var. ‘Newberry Gold’ were optimal with a media sucrose concentration of 5% [both with and without 1 μM benzyladenine (BA)]. Endogenous levels of soluble sugars were directly related to the concentration of sucrose in the medium. Three Hosta cultivars (‘Striptease’, ‘Minuteman’, and ‘Stiletto’) with plant densities of 40–200 explants per liter of medium were tested in larger, agitated, thin-film vessels in media with 5% sucrose and directly compared to agar medium. Higher rates of multiplication were observed in liquid than agar with the magnitude of the difference dependent on explant density. Pooled results for the three varieties with 200 explants per liter showed multiplication rates of 1.7x and 2.3x for agar and thin-film liquid, respectively. At 40 explants per liter, the multiplication rate was increased to 2.1x for agar and 3.4x for thin-film liquid. Sugar uptake was greater in liquid than agar and was greater in the higher densities, with the magnitude of the effect dependent on plant variety. Increased vessel size in the liquid, thin-film system and greater sugar uptake allowed more, larger plants to be harvested. Alocasia macrorrhizos was cultured in growth medium containing 1μM BA and 5% sucrose with plant densities in the range of 33–330 explants per liter. Dry weight and multiplication rate were greater in the liquid system than agar with the magnitude of the difference dependent on plant density. With approximately 165 explants per liter, and greater at the initiation of culture, plant density limited growth in both agar and liquid thin-film systems. In a multiplication medium (3 μM BA and 3 μM ancymidol) plant size was reduced by 50% and 60% (fresh weight) in liquid and agar, respectively. Initial density in the range of 165–330 explants per liter did not limit growth with the smaller plants in liquid or semisolid multiplication medium. Sugar uptake was greater in liquid than agar. While ample sugar was present in media for growth at any density on agar, sugar depletion was limiting growth at highest densities with the larger plants in liquid growth medium. In semisolid agar medium, sugar uptake by plants was more rapid than diffusion across the agar medium, resulting in non-equilibrium conditions following the culture cycle. In agitated, liquid medium, a greater transfer of sugars to plant tissue was related to accelerated growth.  相似文献   

15.
16.
Viral diseases are very detrimental to watermelon production. Watermelon silver mottle virus (WSMoV) is a major limiting factor for the production of watermelon and other cucurbit fruits. There are no effective natural sources of resistance to WSMoV, making transgenic resistance an appropriate solution for attenuating virus infection. Hyperhydricity is an important problem in watermelon culture in vitro, resulting from lower multiplication rates, poor quality shoots and tissue necrosis. In this study, we report an Agrobacterium-mediated genetic transfer protocol for commercial watermelon cultivars expressing the nucleocapsid (N) gene of WSMoV and a suitable approach to overcome hyperhydricity in watermelon culture in vitro. Murashige and Skoog (MS) salts containing Schenk and Hildebrandt (SH) vitamins + 50 mg l−1 thiamine HCl could diminish the hyperhydric phenotype. The proximal halves of cotyledons from 3-day-old seedlings were cut into 1.5 × 1.5 mm segments as explants. Four days after co-cultivation, the explants were transferred to a selection medium for shoot regeneration. The putative transgenic shoots developed within 6 weeks of culture and were then transferred to stringent medium for 8 weeks to eliminate ‘escape type’ shoots. Fifty putative transgenic watermelon lines were obtained from three cultivars. PCR and Southern blot analysis confirmed that the foreign gene was incorporated into the genomic DNA of the transgenic lines.  相似文献   

17.
Genetic maps functionally oriented towards disease resistance have been constructed in grapevine by analysing with a simultaneous maximum-likelihood estimation of linkage 502 markers including microsatellites and resistance gene analogs (RGAs). Mapping material consisted of two pseudo-testcrosses, ‘Chardonnay’ × ‘Bianca’ and ‘Cabernet Sauvignon’ × ‘20/3’ where the seed parents were Vitis vinifera genotypes and the male parents were Vitis hybrids carrying resistance to mildew diseases. Individual maps included 320–364 markers each. The simultaneous use of two mapping crosses made with two pairs of distantly related parents allowed mapping as much as 91% of the markers tested. The integrated map included 420 Simple Sequence Repeat (SSR) markers that identified 536 SSR loci and 82 RGA markers that identified 173 RGA loci. This map consisted of 19 linkage groups (LGs) corresponding to the grape haploid chromosome number, had a total length of 1,676 cM and a mean distance between adjacent loci of 3.6 cM. Single-locus SSR markers were randomly distributed over the map (CD = 1.12). RGA markers were found in 18 of the 19 LGs but most of them (83%) were clustered on seven LGs, namely groups 3, 7, 9, 12, 13, 18 and 19. Several RGA clusters mapped to chromosomal regions where phenotypic traits of resistance to fungal diseases such as downy mildew and powdery mildew, bacterial diseases such as Pierce’s disease, and pests such as dagger and root-knot nematode, were previously mapped in different segregating populations. The high number of RGA markers integrated into this new map will help find markers linked to genetic determinants of different pest and disease resistances in grape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The possibility that some of the variation in callus cultures involves epigenetic changes is examined in cultures established from the hypoootyls and roots ofEuphorbia heterophylla. It is shown that the responses of the cultures are affected by the light regimes under which they are grown and that in the dark and under short photoperiods, there are differences between the two types of culture with respect to pigmentation, auxin requirement, capacity to regenerate buds and roots and in certain isozyme patterns, whereas the two cultures are similar from the first passage under continuous light. However, these differences are only maintained for 2–3 passages, after which the root callus becomes similar to the hypoc otyl callus. Evidence is presented that these differences between cultures are epigenetic. Callus cultures established from the apical meristems of shoots and roots ofE. hetero phylla show similar differences to those observed between hypocotyl and root cultures and these differences are also lost after 3 passages. These results indicate that the cells of apical meristems are not totally uncommitted, but are determined as ‘shoot’ and ‘root’ meristem colls, respectively. The practical importance of a better understanding of epigenetic effects in plant cells is strassed.  相似文献   

19.
Summary Analyses of leaves and ‘tubers’ from somatic hybrids of potato and tomato (‘pomato’ with plastids of potato, ‘topato’ with plastids of tomato) produced by fusion of protoplasts from liquid cultures of dihaploid potato and mesophyll of tomato revealed the presence of the two major potato glycoalkaloids (α-solanine and α-chaconine) as well as the tomato glycoalkaloid (αtomatine). The total alkaloid content of leaves was greater than that of ‘tubers’ and similar to levels in the foliage of parent plants. However, glycoalkaloids were more abundant in hybrid ‘tubers’ than in normal potato tubers by a factor of 5–15. In hybrid foliage, approximately 98% of the alkaloid present was of potato origin whereas in ‘tubers’ the reverse was the case, with tomatine comprising 60–70% of the total alkaloid. The similarities in alkaloid content and ratios between the pomato and the topato lines indicate that plastomes do not influence the biosynthesis and distribution of these alkaloids. The results indicate that major secondary metabolites may prove useful for assessing the hybrid nature of such plants.  相似文献   

20.
Rice has emerged as a model monocot for studies in agriculture and biotechnology due to its relatively small genome and a ready accessibility to plant material. Tissue culture is one of the tools required for genetic transformation and some breeding programs, and the selection of high-frequency regenerator types is essential for success in these technologies. Thirty-three rice entries with agricultural and biotechnological characteristics of interest were screened with the aim to identify the best regenerators. Entries that exhibited between 50% and 90% regeneration frequencies include ‘Taipei-309,’ ‘Super Dwarf,’ ‘Norin’ (japonica types), PI 312777, ‘Ali Combo’ (indica types), ‘STG-S,’ and ‘LA3’ (red rice types). One third of the entries tested were at least two times better at regeneration than the often-cited regenerator ‘Nipponbare.’ Those entries showing at least 85% frequency of greening or somatic embryo formation at 15 or 30 d on regeneration medium ultimately produced whole plants after 45 d on regeneration medium at high frequency (at least 40%); those entries not reaching the 85% threshold of greening by Days 15 or 30 exhibited moderate (15–40%) to low (less than 10%) frequency of whole plant regeneration. This greening response suggests the means for an early prediction system for identification of useful rice regenerator lines, which would be beneficial for high-throughput screening of germplasm as well as for decreasing the time and cost of in vitro culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号