首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformations of the gamma chain COOH terminus of intact fibrinogen and various fragments containing this region have been compared by an immunochemical analysis. Location of a major epitope in the sequence gamma 391-405 was successfully predicted from a hydrophobicity profile. An antibody population specific for the native epitope within the gamma 391-405 segment was isolated by immunoadsorption. Between 19.2 and 22.8% of antibodies were obtained from three different antisera, indicating that this region represents one of the major epitopes of native fibrinogen. Anti-gamma 391-405(N) antibodies were used to determine the value of Kconf, the equilibrium constant for the interconversion of the non-native and native conformations of this epitope. The measurements were done using native fibrinogen, fragments D1 and DD, gamma chain, and gamma 391-405. In addition, the effect of 5 M guanidine HCl on the conformation of fragments D1 and DD, which is known to abolish their antipolymerizing activity, was studied. Radioiodinated fibrinogen was used in the determination of Kconf, CI50%, and CIs (quantitative analytical parameters calculated from competitive inhibition radioimmunoassays) by measuring the competition between 125I-fibrinogen and the fibrinogen derivatives under study for binding to the immunochemically purified antibody. The measurements indicated that the epitope is unperturbed by iodination of fibrinogen and that 38.5% of fragment D1, 8.9% of fragment DD, 3.6% of the gamma chain, and less than 0.008% of the gamma 391-405 molecules adopt in aqueous solution the native conformation within the epitope. Denaturation of fragment D1 with 5 M guanidine HCl affected only slightly the conformation of this gamma chain determinant. More significant changes in the conformation were observed when fragment DD was denatured. The results suggest that long-range interactions are necessary for the stabilization of the native structure in the region of fibrinogen that interacts with the antibody and which is in close vicinity to the polymerization site, cross-linking site, and platelet recognition site.  相似文献   

2.
The effect of two monoclonal antibodies P2 (LyP 2) or P4 (LyP 4), specific for the platelet membrane glycoprotein IIb/IIIa complex, on binding of 125I-labelled fibrinogen or 125I-labelled fibronectin to thrombin-stimulated platelets was studied. These monoclonal antibodies are directed against different determinants on the IIb-IIIa complex and react only with the complex and not with the individual glycoproteins. Fibrinogen binding to thrombin-stimulated platelets was significantly inhibited by P2 but not by P4. Fibronectin binding to thrombin-stimulated platelets was significantly inhibited by P4 but only poorly by P2. These results indicate the presence of specific regions on the glycoprotein IIb-IIIa complex which act as binding sites for fibrinogen or fibronectin. Other authors [Haverstick et al. (1985) Blood 66, 946-952; Ginsberg et al. (1985) J. Biol. Chem. 260, 4133-4138] have shown that a tetrapeptide, Arg-Gly-Asp-Ser, inhibited the binding of fibrinogen, fibronectin, and von Willebrand factor (vWf) to stimulated platelets and that fibrinogen competes with vWf and fibronectin for binding. These findings, together with previous studies, therefore indicate the presence of specific regions as well as a common region in the binding sites for fibrinogen and fibronectin on the IIb-IIIa complex.  相似文献   

3.
We have applied the principle of complementary hydropathy to the prediction of the binding site for fibronectin (FN) and for the alpha-chain of fibrinogen in the platelet receptor complex glycoprotein (GP) IIb-IIIa. Since both ligands bind to it through their respective RGDS (Arg-Gly-Asp-Ser) domains and since both have been cloned, we were able to deduce the amino acid sequence of the binding site from the nucleotide sequence coding for RGDS in both proteins. The deduced peptides were very similar. Antibodies raised against a synthetic peptide WTVPTA (Trp-Thr-Val-Pro-Thr-Ala) deduced from the cloned rat FN RGDS domain block ADP-mediated platelet aggregation; this block can be overcome by additional fibrinogen. In Western blots of whole cell platelet extracts run under reducing conditions, this antibody binds to a 108-kDa band. It also binds to affinity-purified GP IIIa. Furthermore, it reacts strongly with GP IIIa immunoprecipitated by a commercially available anti-GP IIb-IIIa monoclonal antibody. Binding of affinity-purified GP IIb-IIIa complex to fibronectin is inhibited by the 110-kDa FN fragment. Similar inhibitions can be effected by WTVPTA (Trp-Thr-Val-Pro-Thr-Ala) and GAVSTA (Gly-Ala-Val-Ser-Thr-Ala) predicted from the rat and human fibronectin nucleotide sequences, respectively. GAGSTA (Gly-Ala-Gly-Ser-Thr-Ala) and GARSTA (Gly-Ala-Arg-Ser-Thr-Ala) related to the human peptide but with discrepant hydropathies are noninhibitory.  相似文献   

4.
A conformation-dependent epitope of human platelet glycoprotein IIIa.   总被引:2,自引:0,他引:2  
This study explores conformational states of human platelet glycoprotein IIIa (GP IIIa) and possible mechanisms of fibrinogen receptor exposure. D3GP3 is an IgG1, kappa monoclonal antibody generated against purified GP IIIa and found to be specific for GP IIIa by immunoprecipitation and Western blot analysis. The binding of D3GP3 to resting platelets caused fibrinogen binding (approximately 5,000 molecules/platelet) and platelet aggregation but not secretion. Platelets express 40,000-50,000 GP IIb-IIIa molecules in their surface membranes. However, resting platelets only bound approximately 5,000 D3GP3 molecules/platelet. D3GP3 binding to platelets could be increased 2-3-fold by dissociation of the GP IIb-IIIa complex with 5 mM EDTA or by occupying the fibrinogen receptor with either RGDS peptides or fibrinogen. Platelet stimulation with ADP in the absence of fibrinogen did not cause increased D3GP3 binding above control levels. These data suggest that 1) GP IIb-IIIa can exist in multiple conformations in the platelet membrane, 2) D3GP3 binding to GP IIIa can expose the fibrinogen receptor, 3) the binding of either RGDS peptides or fibrinogen causes exposure of the D3GP3 epitope, and 4) platelet activation in the absence of ligand does not induce the same conformational changes in GP IIb-IIIa as does receptor occupancy by RGDS peptides or fibrinogen.  相似文献   

5.
The glycoprotein IIb-IIIa complex (GP IIb-IIIa) is a platelet cell-surface receptor for fibrinogen and fibronectin. A carboxyl-terminal decapeptide of the fibrinogen gamma-chain (Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val LGGAKQAGDV] and a tetrapeptide (Arg-Gly-Asp-Ser (RGDS] from the fibrinogen alpha-chain and the fibronectin cell-binding domain appear to mediate the binding of these ligands to GP IIb-IIIa. The present study was designed to examine the effects of these and related peptides on the structure of purified platelet GP IIb-IIIa. Treatment of GP IIb-IIIa with various synthetic peptides affected the glycoprotein so that GP IIb alpha became a substrate for hydrolysis by thrombin. The order of potency of these peptides was as follows: RGDS greater than LGGAKQAGDV greater than KGDS greater than RGES. This is the same order of potency in which these peptides inhibit fibrinogen binding to platelets. This effect was time-, temperature-, and concentration-dependent; RGDS induced a half-maximal effect at approximately 60 microM. In addition, RGDS, but not RGES, decreased the intensity of the intrinsic protein fluorescence of GP IIb-IIIa. Finally, the decapeptide or RGDS decreased the sedimentation coefficient of GP IIb-IIIa from 8.5 to 7.7 or 7.4 S, respectively, whereas RGES had a minimal effect. This decrease was accompanied by an increase in the Stoke's radius from 74 to 82 A with RGDS or 85 A with the decapeptide, indicating a peptide-induced unfolding of the GP IIb-IIIa complex. This change in conformation may be related to changes in the distribution and function of GP IIb-IIIa on the platelet surface that occur when adhesive proteins or peptides from the GP IIb-IIIa binding domains of these proteins bind to GP IIb-IIIa.  相似文献   

6.
Binding of fibronectin to alpha-granule-deficient platelets   总被引:3,自引:0,他引:3       下载免费PDF全文
Most of the proposed functions for fibronectin involve its interaction with cells, yet the molecular nature of cellular fibronectin binding site(s) has remained obscure. Thrombin induces saturable platelet binding sites for plasma fibronectin and concurrently stimulates surface expression of a number of platelet alpha-granule constituents including thrombospondin and fibrin which are known to interact with fibronectin. To test the hypothesis that these (or other alpha-granule proteins) mediate plasma fibronectin binding, we used platelets of patients with the Gray Platelet Syndrome. These cells were deficient in thrombospondin, beta-thromboglobulin, platelet factor 4, fibronectin, and fibrinogen as measured in radioimmunoassay. They also had reduced von Willebrand factor content as judged by immunofluorescence. At plasma fibronectin inputs from 0.03 to 3 times the apparent kilodalton, these Gray platelets bound virtually identical quantities of fibronectin as normal cells. Thus, platelets containing 1,500 molecules of thrombospondin per platelet could bind more than 100,000 molecules of plasma fibronectin per cell following thrombin stimulation. These data preclude any simple model in which newly surface expressed thrombospondin (or other alpha-granule protein) functions as the major thrombin-stimulated plasma fibronectin receptor in this cell type.  相似文献   

7.
Tumor cell adhesion to the extracellular matrix is an important consideration in tumor metastasis. Recent results show that multiple adhesion-promoting domains for melanoma cells can be purified from proteolytic digests of fibronectin [McCarthy, J. B., Hagen, S. T., & Furcht, L. T. (1986) J. Cell Biol. 102, 179-188]. Monoclonal antibodies were generated against a tryptic/catheptic 33K heparin binding fragment of fibronectin derived from the carboxyl terminal of the A chain. This region contains a tumor cell adhesion-promoting domain(s). The amino-terminal sequence was determined for this fragment, as well as a tryptic 31K fragment which is located to the carboxyl-terminal side of the 33K heparin binding fragment in A chains of fibronectin. The partial sequence data demonstrate that arginyl-glycyl-aspartyl-serine (RGDS) or the related arginyl-glutamyl-aspartyl-valine (REDV) is not present in the 33K heparin binding fragment, confirming earlier results which demonstrated that cells adhere to this fragment by an RGDS-independent mechanism. Two monoclonal antibodies, termed AHB-1 and AHB-2, recognized epitopes common to heparin binding fragments derived from the carboxyl terminus of both the A and B chains of fibronectin. Monoclonal antibody AHB-2 inhibited melanoma adhesion to the 33K heparin binding fragment of fibronectin in a concentration-dependent manner, whereas monoclonal antibody AHB-1 had no effect on adhesion to this fragment. Neither monoclonal antibody inhibited adhesion to intact fibronectin. However, monoclonal AHB-2 potentiated the inhibitory effect of suboptimal levels of exogenous RGDS on cell adhesion to intact fibronectin. AHB-2 recognized an epitope common to both the A- and B-chain carboxyl-terminal heparin binding region of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Platelet glycoproteins IIb and IIIa function as a fibrinogen receptor on the activated platelet. We have shown that these glycoproteins can be incorporated onto the surface of phosphatidylcholine vesicles with retention of fibrinogen and antibody binding properties and can permit Ca2+ transit across the phospholipid bilayer. In the current study we demonstrate that this apparent Ca2+ channel function is specifically inhibited by the synthetic analogue of the fibrinogen gamma COOH-terminal peptide, His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (His-12-Val), but not by the adhesive protein sequence Arg-Gly-Asp-Ser (RGDS). Prior incubation of IIb-IIIa liposomes with RGDS prevented Ca2+ transit inhibition by 25 microM His-12-Val, analogous to RGDS inhibition of His-12-Val binding to platelets. His-12-Val inhibited a minor component of transmembrane Ca2+ influx into ADP and thrombin-activated human platelets but had no effect on steady-state platelet 45Ca flux. These data indicate that ligand binding may exert a regulatory influence on transmembrane Ca2+ influx into activated platelets. The difference in inhibitory potency of the peptides studied may be related to differences in conformational changes in the glycoprotein IIb-IIIa complex induced by His-12-Val and RGDS, steric considerations, or differences in interactions with glycoprotein IIb Ca2+ binding domains.  相似文献   

9.
KRDS (Lys-Arg-Asp-Ser), a tetrapeptide from human lactotransferrin, was tested in vitro on human platelet function, and its effects were compared to those of RGDS, a tetrapeptide from human fibrinogen. Both peptides had a high probability of initiating a beta-turn and were highly hydrophilic. KRDS inhibited ADP-induced platelet aggregation [median inhibitory concentration (IC50) 350 microM] and fibrinogen binding (IC50 360 microM) to a lesser extent than RGDS (IC50 75 microM and 20 microM, respectively). Different from RGDS, thrombin-induced serotonin release was inhibited by KRDS (750 microM) on normal platelets (55 +/- 10%) and type I Glanzmann's thrombasthenia platelets (43% +/- 1). However, KRDS had no effect on cytoplasmic Ca2+ mobilization, inositol phospholipid metabolism or protein phosphorylation (myosin light chain P20 and P43). In contrast to RGDS, KRDS does not inhibit the binding of monoclonal antibody PAC-1 to activated platelets. KRDS and RGDS inhibited 4 beta-phorbol-12-myristate-13-acetate (PMA)-induced aggregation and fibrinogen binding, while proteins were normally phosphorylated. Thus, the tetrapeptide KRDS is (a) an inhibitor of serotonin release by a mechanism independent of protein phosphorylation and (b) an inhibitor of fibrinogen binding and, hence, aggregation by a mechanism that may not necessarily involve its direct binding to the glycoprotein IIb-IIIa-complex.  相似文献   

10.
The radiolabelled monoclonal antibody, 5G11, directed against native thrombospondin, has been used to assess the surface expression of secreted thrombospondin on human blood platelets. Emphasis has been placed on studying the role of fibrinogen in this process. Unstimulated platelets bound low amounts of 5G11 (about 2000 molecules/platelet). Binding increased 2-fold and 5-7-fold after stimulation of platelets with ADP or thrombin (or ionophore A23187) respectively. Unstimulated platelets from patients deficient in alpha-granule proteins (gray platelet syndrome) bound baseline levels of 5G11. However, binding was not increased after activation. Thrombospondin expression on thrombin-stimulated normal platelets was for a large part divalent-cation-dependent and was not affected by AP-2, a monoclonal antibody to GPIIb-IIIa complexes. However, binding of 5G11 was some 50% lower when platelets were stimulated in the presence of Fab fragments of a polyclonal rabbit antibody to fibrinogen. This suggested either a direct binding of thrombospondin to surface-bound fibrinogen or a steric inhibition due to a close proximity of the two proteins. The fact that binding of 5G11 was at the lower limit of the normal range to the stimulated platelets of an afibrinogenaemic patient specifically lacking detectable fibrinogen favoured the latter explanation. Thus, a major fibrinogen-independent pathway for thrombospondin expression must exist.  相似文献   

11.
Fibronectin binds to specific receptors on the surface of washed, thrombin-activated platelets. Evidence suggests that these receptors are closely associated with the platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa). To determine whether GP IIb-IIIa itself can form a platelet receptor for fibronectin, we used a filtration assay to examine the interaction of purified fibronectin with purified GP IIb-IIIa incorporated into phospholipid vesicles. 125I-Fibronectin binding to the phospholipid vesicles required the presence of incorporated GP IIb-IIIa and was specific, time-dependent, reversible, saturable, and divalent cation-dependent (Mg2+ greater than Ca2+). The dissociation constant for 125I-fibronectin binding to the GP IIb-IIIa-containing vesicles in the presence of 2 mM MgCl2 was 87 nM. Proteins or peptides that inhibit 125I-fibronectin binding to whole platelets also inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. Thus, specific 125I-fibronectin binding was inhibited by excess unlabeled fibrinogen or fibronectin, the anti-GP IIb-IIIa monoclonal antibody 10E5, the decapeptide from the carboxyl terminus of the fibrinogen gamma-chain, and the tetrapeptide Arg-Gly-Asp-Ser from the cell-binding domain of fibronectin. In contrast to results obtained using whole platelets, unlabeled fibronectin inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. These results show that 125I-fibronectin binds directly to purified GP IIb-IIIa with most of the previously reported properties of 125I-fibronectin binding to washed, thrombin-stimulated platelets. Thus, GP IIb-IIIa has the potential to function as a platelet receptor for fibronectin as well as for fibrinogen.  相似文献   

12.
Interaction of thrombospondin with resting and stimulated human platelets   总被引:12,自引:0,他引:12  
The interaction of isolated and radioiodinated thrombospondin with washed human platelets has been characterized. The ligand bound to nonstimulated and thrombin-stimulated platelets in a time-dependent manner, and apparent steady state was reached within 25 min. Binding was not due to iodination of the ligand and was inhibited by nonlabeled thrombospondin but not by unrelated proteins, and bound ligand was identical with thrombospondin in terms of subunit structure. Nonlinear curve-fitting analyses of binding to resting platelets suggested the presence of a single class of sites which bound 3,100 +/- 1,000 molecules/platelet with an apparent Kd of 50 +/- 20 nM. This interaction was not attributable to contaminating cells or inadvertant platelet activation. Binding to thrombin-stimulated platelets had a lower apparent affinity (Kd = 250 +/- 100 nM) and higher apparent capacity (35,600 +/- 9,600 molecules/platelet). Thrombin-enhanced binding was dependent upon agonist dose and platelet stimulation. Fibrinogen, a monoclonal antibody to GPIIb-IIIa, temperature, and divalent ions had differential effects upon thrombospondin binding to resting and stimulated platelets, suggesting the presence of two distinct mechanisms of thrombospondin binding to platelets. While thrombospondin binding to thrombin-stimulated platelets occurs with characteristics similar to those observed for fibrinogen, fibronectin, and von Willebrand Factor, its high affinity interaction with resting platelets is unique to this adhesive glycoprotein.  相似文献   

13.
The glycoprotein IIb-IIIa complex (GP IIb-IIIa) mediates platelet aggregation and is a member of the cytoadhesin family of receptors that bind adhesive proteins such as fibrinogen, fibronectin, and von Willebrand factor. Despite the wide range of cell-substrate interactions mediated by these receptors, ligand binding domains have not yet been identified on any of the integrins. The present study was designed to determine potential fibrinogen binding domain(s) on the GP IIb-IIIa complex. Synthetic peptides derived from residues 1-288 of the amino-terminal portion of GP IIIa were tested for their abilities to block the binding of fibrinogen to purified GP IIb-IIIa in a solid-phase microtiter assay. Two overlapping peptides encompassing residues 204-229 of GP IIIa were identified which blocked fibrinogen binding in this assay. Polyclonal antibodies to these peptides blocked fibrinogen binding to purified GP IIb-IIIa as well as platelet aggregation. The overlapping residues of these two peptides GP IIIa (211-222), SVSRNRDAPEGG-NH2, blocked the binding of fibronectin, von Willebrand factor, and vitronectin to purified GP IIb-IIIa. Finally, direct binding of GP IIIa (204-229) to fibrinogen and fibronectin was demonstrated by enzyme-linked immunosorbent assay. We conclude from these studies that the amino acid sequence 211-222 of GP IIIa is critically involved in adhesive protein binding, and may represent an important portion of the GP IIb-IIIa ligand binding domain.  相似文献   

14.
Platelet membrane GPIIbIIIa is a member of the family receptors named integrins that recognize RGD sequences in their ligands. GPIIbIIIa interacts with at least three different adhesive ligands: fibrinogen, fibronectin, and von Willebrand factor. These interactions are inhibited by RGD-containing peptides and by peptides corresponding to a sequence unique to fibrinogen in the COOH-terminal domain of its gamma chain (HLGGAKQAGDV). Two RGD sequences are present in fibrinogen A alpha chain: an RGDS sequence at A alpha 572-575, and an RGDF sequence at A alpha 95-98. Polyclonal antibodies raised against the RGDF sequence and the gamma COOH-terminal domain both reacted specifically with fibrinogen in solid phase enzyme-linked immunosorbent assays and immunoprecipitated the protein in solution. The Fab fragments prepared from these antibodies inhibited fibrinogen-platelet interaction and aggregation. These results demonstrate that these two sequences are both accessible within the fibrinogen molecule and are both implicated in ligand binding and cell-cell interaction. In addition, by further examining the interaction of the gamma chain peptide with platelets, it was found that RGDF and the gamma peptide produced a similar dose-dependent inhibition of the binding of the labeled gamma peptide to ADP-stimulated platelets. These results provide evidence that the RGDF sequence present at the A alpha 95-98 constitutes with the gamma 401-411 sequence two recognition sites interacting with the same site or with mutually exclusive sites on GPIIbIIIa.  相似文献   

15.
The platelet membrane glycoprotein IIb-IIIa complex (GPIIb-IIIa) recognizes peptides containing the amino acid sequence Arg-Gly-Asp, a sequence present at two locations in the alpha chain of fibrinogen. GPIIb-IIIa also interacts with peptides containing the carboxyl-terminal 10-15 residues of the fibrinogen gamma chain. We found that the alpha chain tetrapeptide, Arg-Gly-Asp-Ser (RGDS), and the gamma chain peptide, Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val (LGGAKQAG-DV), each inhibited fibrinogen binding to ADP-stimulated platelets with Ki values of 15.6 +/- 2.7 and 46.2 +/- 8.2 microM, respectively. Furthermore, the inhibitory effect of the peptides was additive, indicating that they interact with GPIIb-IIIa in a mutually exclusive manner. Mutually exclusive binding suggests that either the alpha and gamma chain peptides bind to identical or overlapping sites on the GPIIb-IIIa complex or that one peptide induces a change in the complex that excludes the other. To differentiate between these possibilities, we compared the ability of RGDS and LGGAKQAGDV to inhibit the binding of fibrinogen and two GPIIb-IIIa complex-specific monoclonal antibodies, A2A9 and PAC-1, to ADP-stimulated platelets. A2A9 and PAC-1 appear to bind to different sites on GPIIb-IIIa because A2A9 binds to both stimulated and unstimulated platelets while PAC-1 only binds to stimulated platelets. RGDS specifically inhibited fibrinogen and PAC-1 binding with nearly identical Ki values of 15.6 +/- 2.7 and 20.2 +/- 3.5 microM, respectively. In contrast, LGGAKQAGDV had a differential effect on fibrinogen and PAC-1 binding, inhibiting PAC-1 binding with a Ki of 116.1 +/- 12.9 microM and fibrinogen binding with a Ki of 46.2 +/- 8.2 microM (p less than 0.005). Furthermore, while RGDS had no effect on the binding of the monoclonal antibody A2A9, LGGAKQAGDV was a partial inhibitor of A2A9 binding to activated platelets. These results suggest that the bindings sites for RGDS and LGGAKQAGDV are spatially distinct. They also suggest that ligand-induced changes in GPIIb-IIIa conformation are likely to be responsible for the mutually exclusive nature of alpha and gamma chain peptide binding.  相似文献   

16.
Tyrosine phosphorylation of multiple platelet proteins is stimulated by thrombin and other agonists that cause platelet aggregation and secretion. The phosphorylation of a subset of these proteins, including a protein tyrosine kinase, pp125FAK, is dependent on the platelet aggregation that follows fibrinogen binding to integrin alpha IIb beta 3. In this report, we examined whether fibrinogen binding, per se, triggers a process of tyrosine phosphorylation in the absence of exogenous agonists. Binding of soluble fibrinogen was induced with Fab fragments of an anti-beta 3 antibody (anti-LIBS6) that directly exposes the fibrinogen binding site in alpha IIb beta3. Proteins of 50-68 KD and 140 kD became phosphorylated on tyrosine residues in a fibrinogen- dependent manner. This response did not require prostaglandin synthesis, an increase in cytosolic free calcium, platelet aggregation or granule secretion, nor was it associated with tyrosine phosphorylation of pp125FAK. Tyrosine phosphorylation of the 50-68-kD and 140-kD proteins was also observed when (a) fibrinogen binding was stimulated by agonists such as epinephrine, ADP, or thrombin instead of by anti-LIBS6; (b) fragment X, a dimeric plasmin-derived fragment of fibrinogen was used instead of fibrinogen; or (c) alpha IIb beta 3 complexes were cross-linked by antibodies, even in the absence of fibrinogen. In contrast, no tyrosine phosphorylation was observed when the ligand consisted of monomeric cell recognition peptides derived from fibrinogen (RGDS or gamma 400-411). Fibrinogen-dependent tyrosine phosphorylation was inhibited by cytochalasin D. These studies demonstrate that fibrinogen binding to alpha IIb beta 3 initiates a process of tyrosine phosphorylation that precedes platelet aggregation and the phosphorylation of pp125FAK. This reaction may depend on the oligomerization of integrin receptors and on the state of actin polymerization, organizational processes that may juxtapose tyrosine kinases with their substrates.  相似文献   

17.
Activation or ligand binding induces conformational changes in alpha IIb beta3, resulting in exposure of neoepitopes named ligand-induced binding sites. We reported here a novel monoclonal antibody developed by using Chinese hamster ovary (CHO) cells expressing an activated alpha IIb beta3 mutant (CHO alpha IIb beta3Delta717) as the immunogen. This IgG 2b kappa named 3C7 was specific for the complex of alpha IIb beta3 as demonstrated by flow cytometry, immunoprecipitation, and EDTA chelating. The binding of 3C7 to platelets increased significantly when platelets were activated by ADP/thrombin or occupied by RGDS peptides, fibrinogen, or PAC-1, suggesting that 3C7 was an anti-ligand-induced binding site antibody. The antibody failed to bind to the CHO cells expressing another alpha IIb beta3 mutant (beta3Y178A) suggesting that the Cys177-Cys184 loop of beta3 was likely the epitope for 3C7. 3C7 inhibited platelet aggregation, which was initiated by ADP or thrombin in a dose-dependent manner (IC50s of 5.6 and 0.05 microg/ml, respectively). The antibody also inhibited platelet adhesion to immobilized fibrinogen but not to fibronectin or collagen. These findings suggested that 3C7 was a potent antagonist of integrin alpha IIb beta3 and a potential anti-thrombotic agent.  相似文献   

18.
We have previously shown that the alpha chain of human fibrinogen interacts directly with ADP-activated human platelets [Hawiger, J., Timmons, S., Kloczewiak, M., Strong, D. D., & Doolittle, R. F. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2068]. Now, we report that platelet receptor recognition domains are localized on two CNBr fragments of the human fibrinogen alpha chain. They encompass residues 92-147 and 518-584, which inhibit 125I-fibrinogen binding to ADP-stimulated platelets. The inhibitory CNBr fragment alpha 92-147 contains the RGD sequence at residues 95-97. Synthetic peptides encompassing this sequence were inhibitory while peptide 99-113 lacking the RGD sequence was inactive. The synthetic peptide RGDF, corresponding to residues alpha 95-98, inhibited the binding of 125I-fibrinogen to ADP-treated platelets (IC50 = 2 microM). However, the peptides containing sequence RGDF, with residues preceding Arg95 or following Phe98, were less inhibitory. It appears that the sequence alpha 95-98 constitutes a platelet receptor recognition domain which is constrained by flanking residues. The second inhibitory CNBr fragment, alpha 518-584, also contains the sequence RGD at positions 572-574. Synthetic peptides overlapping this sequence were inhibitory, while peptides lacking the sequence RGDS were not reactive. Thus, another platelet reactive site on the alpha chain encompasses residues 572-575 containing sequence RGDS. In conclusion, the platelet receptor recognition domains on the human fibrinogen alpha chain in the amino-terminal and in the carboxy-terminal zones contain the ubiquitous cell recognition sequence RGD shared with other known adhesive proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Localization of the domains of fibrin involved in binding to platelets   总被引:2,自引:0,他引:2  
The molecular basis of platelet-fibrin interactions has been investigated by using synthetic peptides as potential inhibitors of fibrin protofibril and fibrinogen binding to ADP-stimulated platelets, adhesion of fibrin fibers to the platelet surface, and platelet-mediated clot retraction. Synthetic peptides of sequence RGDS and HHLGGAKQAGDV, corresponding to regions of the fibrinogen alpha- and gamma-chains previously identified as platelet recognition sites, inhibited the binding of radiolabelled soluble fibrin oligomers to ADP-stimulated platelets with IC50 values of 10 and 40 microM, respectively. Synthetic GPRP and GHRP, corresponding to the N-terminal tripeptide sequence of the fibrin alpha-chains and the tetrapeptide sequence of the beta-chains, respectively, were minimally effective in blocking soluble fibrin polymer binding to ADP-stimulated platelets. Platelet functions which are unique to the three-dimensional fibrin network were examined by measurements of the extent of adhesion of fluorophore-labelled fibrin to platelets with a microfluorimetric technique and by light scattering measurements of the time course of clot retraction. Inhibition of fibrin-platelet adhesion by RGDS, HHLGGAKQAGDV and GHRP exhibited a similar, linear dependence reaching 1/2 maximum at about 200 microM, suggesting nonspecific effects. GPRP inhibited fibrin assembly but did not appear to have specific effects on fibrin-platelet adhesion. Only RGDS effected clot retraction, causing a 4-6-fold decrease in rate at 230 microM. These results indicate that fibrinogen and fibrin protofibrils, which are obligatory intermediates on the fibrin assembly pathway, share a set of common platelet recognition sites located at specific regions of the alpha- and gamma-chains of the multinodular fibrin(ogen) molecules. The RGDS site is also involved in mediating interactions between the three-dimensional fibrin network and stimulated platelets.  相似文献   

20.
Human platelet agonists such as thrombin, ADP, and collagen stimulate the rapid expression of fibrinogen receptors. In other cell types, calcium-activated proteases have been suggested to participate in the mechanism of expression of cell surface receptors (Lynch, G., and Baudry, M. (1984) Science 224, 1057-1063). In platelets the majority of the neutral protease activity is calcium-activated protease. We examined the effects of leupeptin and antipain, two calcium-activated protease inhibitors, on the expression of platelet fibrinogen receptors. These inhibitors abolished thrombin and ADP-induced fibrinogen binding. This inhibition required the addition of leupeptin or antipain prior to the agonist and was not due to displacement of fibrinogen from its receptor or inhibition of agonist binding to platelets. Leupeptin and antipain also inhibited fibrinogen-independent thrombin-stimulated release of serotonin. These results are discussed in relation to the involvement of calcium-activated protease in early events of platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号