首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Whole cells of Bacillus subtilis transported d-alanine and l-alanine by two different systems. The high-affinity system (K(m) of 1 muM and V(max) of 0.6 to 0.8 nmol/min per mg of protein) was specific for the two stereoisomers of alanine. The low-affinity system (K(m) of 10 muM for l-alanine and 20 muM for d-alanine and glycine) had a V(max) of 5 to 12 nmol/min per mg of protein. This system transported glycine, d-cycloserine, and d-serine, in addition to d- and l-alanine. Azide inhibited the uptake of these amino acids and caused the efflux of d-alanine from preloaded cells. These data suggest that transport of these amino acids is energized by the electron transport chain.  相似文献   

2.
The zero-trans uptake of purines and pyrimidines was measured in suspensions of Novikoff rat hepatoma, mouse L, P388 mouse leukemia, and Chinese hamster ovary cells by a rapid kinetic technique which allows the determination of uptake time points in intervals as short as 1.5 s. Kinetic parameters for purine/pyrimidine transport were determined by measuring substrate influx into cells in which substrate conversion to nucleotides was negligible either due to lack of the appropriate enzymes or to depletion of the cells of ATP (5'-phosphoribosylpyrophosphate), and by computer fitting exact, integrated rate equations derived for various carrier-mediated transport models directly to zero-trans influx data. The results indicate that different carriers function in the transport of hypoxanthine/guanine, adenine, and uracil with substrate:carrier association constants (K) at 24 degrees C of 300 to 400 muM, 2 to 3 mM, and about 14 mM, respectively, for Novikoff cells. K and Vmax for hypoxanthine transport by L and P388 cells are similar to those for Novikoff cells, but the transport capacity of Chinese hamster ovary cells is much lower and K = 1500 muM. All transport systems are completely symmetrical. Hypoxanthine transport is so rapid that an intracellular concentration of free hypoxanthine (90%) close to that in the medium is attained within 20 to 50 s of incubation at 24 degrees C, at least at extracellular concentrations below K. In cells in which conversion to nucleotides is not blocked free hypoxanthine accumulates intracellularly to steady state levels with equal rapidity and thereafter the rate of hypoxanthine uptake into total cell material is strictly a function of the rate of phosphoribosylation. The low Km systems for hypoxanthine (1 to 9 muM) and adenine (0.2 to 40 muM) uptake detected previously in many types of cells reflect the substrate saturation of the respective phosphoribosyltransferases rather than of the transport system.  相似文献   

3.
The uptake of C4 dicarboxylates by cells from exponential cultures of Rhodopseudomonas spheroides followed saturation kinetics at concentrations below 100 muM with Km values for succinate, malate, and fumarate of 2.7, 2.3, and 0.8, respectively. Corresponding Vmax values of 50, 52, and 67.5 nmol/min per mg of protein at 20 C were obtained. Each of these compounds interfered competitively with uptake of the others, and a common transport system appears to be involved. Fructose-grown cells took up C4 dicarboxylates only at very low rates, and pyruvate-grown cells took up C4 dicarboxylates at one-third the rates found with succinate-grown cultures. Malonate and maleate inhibited uptake less severely, and aspartate and alpha-ketoglutarate had no effect at 100-fold excess. Divalent metals stimulated uptake. Light or respiration was required for uptake, and entered materials were rapidly converted to other metabolities, notably amino acids. Pyruvate entry appeared to be mediated by several systems, of which only one could be resolved kinetically. This system had a Km of 13 muM and Vmax of 5.6 nmol/min per mg of protein at 20 C. A number of related mono- and dicarboxylates interfered with pyruvate uptake. The pyruvate uptake system was distinguishable from the C4 dicarboxylate system by the absence of divalent cation stimulation and by substrate and inhibitor specificity.  相似文献   

4.
A study of the electron transport chain of the human intestinal pathogen Campylobacter jejuni revealed a rich complement of b- and c-type cytochromes. Two c-type cytochromes were partially purified: one, possibly an oxidase, bound carbon monoxide whereas the other, of high potential was unreactive with carbon monoxide. Respiratory activities determined with membrane vesicles were 50- to 100-fold higher with formate and hydrogen than with succinate, lactate, malate, or NADH as substrates. Evidence for three terminal respiratory components was obtained from respiratory kinetic studies employing cyanide, and the following Ki values for cyanide were determined from Dixon plots: ascorbate + reduced N,N,N', N'-tetramethyl-p-phenylenediamine, K1 + 3.5 muM; malate, K1 = 55 muM; and hydrogen, K1 = 4.5 muM. Two oxidases (K1 = 90 muM, 4.5 mM) participated in the oxidation of succinate, lactate, and formate. Except with formate, 37 muM HQNO inhibited respiration by approximately 50%. Carbon monoxide had little inhibitory effect on respiration except under low oxygen tension (less than 10% air saturation). The stoichiometry of respiratory-driven proton translocation (H+/O) determined with whole cells was approximately 2 for all substrates examined except hydrogen (H+/) = 3.7) and formate (H+/O = 2.5). The higher stoichiometries observed with hydrogen and formate are consistent with their respective dehydrogenase being located on the periplasmic face of the cytoplasmic membrane. The results of this study suggest that the oxidation of hydrogen and formate probably serves as the major sources of energy for growth.  相似文献   

5.
Membrane vesicles of Leuconostoc mesenteroides subsp. dextranicum fused with proteoliposomes prepared from Escherichia coli phospholipids containing beef heart cytochrome c oxidase were used to study the transport of branched-chain amino acids in a strain isolated from a raw milk cheese. At a medium pH of 6.0, oxidation of an electron donor system comprising ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and horse heart cytochrome c resulted in a membrane potential (Deltapsi) of -60 mV, a pH gradient of -36 mV, and an l-leucine accumulation of 76-fold (Deltamu(Leu)/F = 108 mV). Leucine uptake in hybrid membranes in which a Deltapsi, DeltapH, sodium ion gradient, or a combination of these was imposed artificially revealed that both components of the proton motive force (Deltap) could drive leucine uptake but that a chemical sodium gradient could not. Kinetic analysis of leucine (valine) transport indicated three secondary transport systems with K(t) values of 1.7 (0.8) mM, 4.3 (5.9) muM, and 65 (29) nM, respectively. l-Leucine transport via the high-affinity leucine transport system (K(t) = 4.3 muM) was competitively inhibited by l-valine and l-isoleucine (K(i) and K(t) values were similar), demonstrating that the transport system translocates branched-chain amino acids. Similar studies with these hybrid membranes indicated the presence of high-affinity secondary transport systems for 10 other amino acids.  相似文献   

6.
The kinetic parameters of [8-(14)C]adenosine transport by a general nucleoside uptake system were studied in germinated conidia of the ad 8 strain of Neurospora crassa. The apparent K(m) for adenosine uptake by this system was found to be 6.2 muM. The apparent K(i) values for other nucleosides competing with adenosine for uptake were measured by using Dixon plots. Nucleosides which were efficient competitive inhibitors of adenosine transport were found to inhibit severely the rate of growth of strain ad-8 on adenosine-supplemented medium. Xanthosine and thymidine did not inhibit [8-(14)C]adenosine uptake as severely as other nucleosides, nor did they cause significant inhibition of ad-8 growth rate on adenosine.  相似文献   

7.
Kinetics of the transport systems common for entry of L-isoleucine, L-leucine, and L-valine in Salmonella typhimurium LT2 have been analyzed as a function of substrateconcentration in the range of 0.5 to 45 muM. The systems of transport mutants, KA203 (ilvT3) and KA204 (ilvT4), are composed of two components; apparent Km values for uptake of isoleucine, leucine, and valine by the low Km component are 2 muM, 2 to 3 muM, and 1 muM, respectively, and by the high Km component 30 muM, 20 to 40 muM, and 0.1 mM, respectively. The transport system(s) of the wild type has not been separated into components but rather displays single Km values of 9 muM for isoleucine, 10 muM for leucine, and 30 muM for valine. The transport activity of the wild type was repressed by L-leucine, alpha ketoisocaproate, glycyl-L-isoleucine, glycyl-L-leucine, and glycyl-L-methionine. That for the transport mutants was repressed by L-alanine, L-isoleucine, L-methionine, L-valine, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, glycyl-L-alanine, glycyl-L-threonine, and glycyl-L-valine, in addition to the compounds described above. Repression of the mutant transport systems resulted in disappearance of the low Km component for valine uptake, together with a decrease in Vmax of the high Km component; the kinetic analysis with isoleucine and leucine as substrates was not possible because of poor uptake. The maximum reduction of the transport activity for isoleucine was obtained after growing cells for two to three generations in a medium supplemented with repressor, and for the depression, protein synthesis was essential after removal of the repressor. The transport activity for labeled isoleucine in the transport mutant and wild-type strains was inhibited by unlabeled L-alanine, L-cysteine, L-isoleucine, L-leucine, L-methionine, L-threonine, and L-valine. D-Amino acids neither repressed nor inhibited the transport activity of cells for entry of isoleucine.  相似文献   

8.
Studies of binding of the reversible inhibitor DNDS (for abbreviations, see Nomenclature) and red blood cell membranes revealed 8.6 +/- 0.7 x 10(5) high-affinity binding sites per cell (KD = 0.8 +/- 0.4 muM). Under conditions of "mutual depletion," inhibition studies of anion exchange revealed 8.0 +/- 0.7 x 10(5) DNDS inhibitory sites per cell (KD = 0.87 +/- 0.04 muM). Binding and kinetics studies with DNDS indicate that there are 0.8 -- 0.9 x 10(6) functional anion transport sites per blood cell. The transport of DNDS displayed high temperature and concentration dependencies, chemical specificity, susceptibility to inhibition by DIDS, and differences between egress and ingress properties. Under conditions of no DNDS penetration (e.g., 0 degrees C), inhibition of anion exchange by DNDS showed marked sidedness from the outside inhibitions and were demonstrable at micromolar concentrations, whereas from the inside no inhibition occurred even at millimolar concentrations. The asymmetry of DNDS transport properties and the sidedness of binding and inhibition suggest that anion transport sites have a very low affinity for or are inaccessible to DNDS at the inner membrane face. The site of DNDS permeation, although susceptible to DIDS, is apparently not the site of anion exchange.  相似文献   

9.
Membrane vesicles isolated from Bacillus subtilis W23 catalyze active transport of the C4 dicarboxylic acids L-malate, fumarate, and succinate under aerobic conditions in the presence of the electron donor reduced beta-nicotinamide adenine dinucleotide or the non-physiological electron donor system ascorbate-phenazine methosulfate. The dicarboxylic acids are accumulated in unmodified form. Inhibitors of the respiratory chain, sulfhydryl reagents, and uncoupling agents inhibit the accumulation of the dicarboxylic acids. The affinity constants for transport of L-malate, fumarate, and succinate are 13.5, 7.5, and 4.3 muM, respectively; these values are severalfold lower than those reported previously for whole cells. Active transport of these dicarboxylic acids occurs via one highly specific transport system as is indicated by the following observations. (i) Each dicarboxylic acid inhibits the transport of the other two dicarboxylic acids competitively. (ii) The affinity constants determined for the inhibitory action are very similar to those determined for the transport process. (iii) Each dicarboxylic acid exchanges rapidly with a previously accumulated dicarboxylic acid. (iv) Other metabolically and structurally related compounds do not inhibit transport of these dicarboxylic acids significantly, except for L-aspartate and L-glutamate. However, transport of these dicarboxylic amino acids is mediated by independent system because membrane vesicles from B. subtilis 60346, lacking functional dicarboxylic amino acid transport activity, accumulate the C4 dicarboxylic acids at even higher rates than vesicles from B. subtilis W 23. (v) A constant ratio exists between the initial rates of transport of L-malate, fumarate, and succinate in all membrane vesicle preparations isolated from cells grown on various media. This high-affinity dicarboxylic acid transport system seems to be present constitutively in B. subtilis W23.  相似文献   

10.
Uptake of Nitrite by Neurospora crassa   总被引:2,自引:1,他引:1       下载免费PDF全文
Like the nitrate transport system, the nitrite uptake system in Neurospora crassa is induced by either nitrate or nitrite. This induction is prevented by cycloheximide, puromycin, or 6-methyl purine. The K(m) for nitrite of the induced nitrite uptake system is 86 muM, and the V(max) is 100 mumol of nitrite per g (wet weight) per h. Nitrite uptake is inhibited by metabolic poisons such as arsenate, dinitrophenol, cyanide, and antimycin A. No repression or inhibition of the nitrite transport system by ammonia, nitrate, or Casamino Acids was observed.  相似文献   

11.
Analysis of K transport mutants indicates the existence of four separate K uptake systems in Escherichia coli K-12. A high affinity system called Kdp has a Km of 2 muM, and Vmax at 37 degrees C of 150 mumol/g min. This system is repressed by growth in high concentrations of K. Two constitutive systems, TrkA and TrkD, have Km's of 1.5 and 0.5 mM and Vmax's of 550 and 40 at 37 and 30 degrees C, respectively. Mutants lacking all three of these saturable systems take up K slowly by a process, called TrkF, whose rate of transport is linearly dependent on K concentration up to 105 mM. On the whole, each of these systems appears to function as an independent path for K uptake since the kinetics of uptake when two are present is the sum of each operating alone. This is not true for strains having both the TrkD and Kdp systems, where presence of the latter results in K uptake which saturates at a K concentration well below 0.1 mM. This result indicates some interaction between these systems so that uptake now has the affinity characteristic of the Kdp system. All transport systems are able to extrude Na during K uptake. The measurements of cell Na suggest that growing cells of E. coli have very low concentrations of Na, considerably lower than indicated by earlier studies.  相似文献   

12.
Two novel thiazolidine compounds, GW604714X and GW450863X, were found to be potent inhibitors of mitochondrial respiration supported by pyruvate but not other substrates. Direct measurement of pyruvate transport into rat liver and yeast mitochondria confirmed that these agents inhibited the mitochondrial pyruvate carrier (MPC) with K(i) values <0.1 muM. Inhibitor titrations of pyruvate-dependent respiration by heart mitochondria gave values (+/-S.E.) for the concentration of inhibitor binding sites (pmol per mg protein) and their K(i) (nM) of 56.0+/-0.9 and 0.057+/-0.010 nM for the more hydrophobic GW604714X; for GW450863X the values were 59.9+/-4.6 and 0.60+/-0.12 nM. [(3)H]-methoxy-GW450863X binding was also used to determine the MPC content of the heart, kidney, liver and brain mitochondria giving values of 56, 40, 26 and 20 pmol per mg protein respectively. Binding to yeast mitochondria was <10% of that in rat liver mitochondria, consistent with the slow rate of pyruvate transport into yeast mitochondria. [(3)H]-methoxy-GW450863X binding was inhibited by GW604714X and by the established MPC inhibitor, UK5099. The absorbance spectra of GW450863X and GW604714X were markedly changed by the addition of beta-mercaptoethanol suggesting that the novel inhibitors, like alpha-cyanocinnamate, possess an activated double bond that attacks a critical cysteine residue on the MPC. However, no labelled protein was detected following SDS-PAGE suggesting that the covalent modification is reversible. GW604714X and GW450863X inhibited l-lactate transport by the plasma membrane monocarboxylate transporter MCT1, but at concentrations more than four orders of magnitude greater than the MPC.  相似文献   

13.
Sarcolemma isolated from guinea pig heart ventricles possessed ATP-dependent Ca2+ binding and accumulation (+ oxalate) activities which were not inhibited by sodium azide, oligomycin, or ruthenium red. Ca2+ binding and accumulation by sarcolemma were sensitive to pH, the optimum being about pH 6.8. The concentrations of ATP required for half-maximal binding and accumulation were 94.3 and 172 muM, respectively. Mg2+ up to 5 mM significantly enhanced both activities but was inhibitory at higher concentrations (greater than 10 mM). Sarcolemmal Ca2+ binding and accumulation were stimulated 100% by K+, half-maximal enhancement occurring at 5-10 mM K+. Ca2+ binding and accumulation were both saturable processes and the respective apparent Km values for Ca2+ were 16.4 and 14.3 muM. Ca2+ binding by sarcolemma was a rapid process and the bound Ca2+ was released upon depletion of ATP in the medium. It is suggested that the sarcolemmal Ca2+ transport system may well be of significance in regulation of the contraction-relaxation cycle of cardiac muscle.  相似文献   

14.
Purified plasma membrane vesicles from the optic nerve of the squid Sepiotheutis sepioidea accumulate calcium in the presence of Mg2+ and ATP. Addition of the Ca2+ ionophore A23187 to vesicles which have reached a steady state of calcium-active uptake induces complete discharge of the accumulated cation. Kinetic analysis of the data indicates that the apparent Km for free Ca2+ and ATP are 0.2 muM and 21 muM, respectively. The average Vmax is 1 nmol Ca2+/min per mg protein at 25 degrees C. This active transport is inhibited by orthovanadate in the micromolar range. An Na+-Ca2+ exchange mechanism is also present in the squid optic nerve membrane. When an outwardly directed Na+ gradient is imposed on the vesicles, they accumulate calcium in the absence of Mg2+ and/or ATP. This ability to accumulate Ca2+ is absolutely dependent on the Na+ gradient: replacement of Na+ by K+, or passive dissipation of the Na+ gradient, abolishes transport activity. The apparent Km for Ca2+ of the Na+-Ca2+ exchange is more than 10-fold higher than that of the ATP-driven pump (app. Km=7.5 muM). While the apparent Km for Na+ is 74 mM, the Vmax of the exchanger is 27 nmol Ca2+/min per mg protein at 25 degrees C. These characteristics are comparable to those displayed by the uncoupled Ca pump and Na+-Ca2+ exchange previously described in dialyzed squid axons.  相似文献   

15.
L-asparagine uptake in Escherichia coli.   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake of L-asparagine by Escherichia coli K-12 is characterized by two kinetic components with apparent Km values of 3.5 muM and 80 muM. The 3.5 muM Km system displays a maximum velocity of 1.1 nmol/min per mg of protein, which is a low value when compared with derepressed levels of other amino acid transport systems but is relatively specific for L-asparagine. Compounds providing effective competition for L-asparagine uptake were 4-carbon analogues of the L-isomer with alterations at the beta-amide position, i.e., 5-diazo-4-oxo-L-norvaline (Ki = 4.6 muM), beta-hydroxyamyl-L-aspartic acid (Ki = 10 muM), and L-aspartic acid (Ki = 50 muM). Asparagine uptake is energy dependent and is inhibited by a number of metabolic inhibitors. In a derived strain of E. coli deficient in cytoplasmic asparaginase activity asparagine can be accumulated several-fold above the apparent biosynthetic pool of the amino acid and 100-fold above the external medium. The high affinity system is repressed by culture of cells with L-asparagine supplements in excess of 1 mM and is suggested to be necessary for growth of E. coli asparagine auxotrophs with lower supplement concentrations.  相似文献   

16.
Methylamine and ammonia transport in Saccharomyces cerevisiae.   总被引:20,自引:15,他引:5       下载免费PDF全文
Methylamine (methylammonium ion) entered Saccharomyces cerevisiae X2180-A by means of a specific active transport system. Methylamine uptake was pH dependent (maximum rate between pH 6.0 and 6.5) and temperature dependent (increasing up to 35 C) and required the presence of a fermentable or oxidizable energy source in the growth medium. At 23 C the vmax for methylamine transport was similar 17 nmol/min per mg of cells (dry weight) and the apparent Km was 220 muM. The transport system exhibited maximal activity in ammonia-grown cells and was repressed 60 to 70 percent when glutamine or asparagine was added to the growth medium. There was no significant derepression of the transport system during nitrogen starvation. Ammonia (ammonium ion) was a strong competitive inhibitor of methylamine uptake, whereas other amines inhibited to a much lesser extent. Mutants selected on the basis of their reduced ability to transport methylamine (Mea-R) simultaneously exhibited a decreased ability to transport ammonia.  相似文献   

17.
Previous research suggests that the lifetime carbon gain of a leaf is constrained by a tradeoff between metabolism and longevity. The biophysical reasons underlying this tradeoff are not fully understood. We used a photosynthesis-leaf water balance model to evaluate biophysical constraints on carbon gain. Leaf hydraulic conductance (K(Leaf)), carbon isotope discrimination (Δ(13)C), leaf mass per unit area (LMA) and the driving force for water transport from stem to leaf (ΔΨ(Stem-Leaf)) were characterized for leaves spanning three orders of magnitude in surface area and two orders of magnitude in lifespan. We observed positive isometric scaling between K(Leaf) and leaf area but no relationship between Δ(13)C and leaf area. Leaf lifespan and LMA had minimal effect on K(Leaf) per unit leaf area, but a negative correlation exists among LMA, lifespan, and K(Leaf) per unit dry mass. During periods of leaf water loss, ΔΨ(Stem-Leaf) was relatively constant. We show for the first time that K(Leaf, mass), an index of the carbon cost associated with water use, is negatively correlated with lifespan. This highlights the importance of characterizing K(Leaf, mass) and suggests a tradeoff between resource investment in liquid phase processes and structural rigidity.  相似文献   

18.
The kinetics of the cellulase-catalyzed conversion of soluble cellulose into glucose have been studied over a range of substrate concentrations and temperatures, and at pH values ranging from 4.75 to 7.0. Lineweaver-Burk plots were linear and led to V = 6.2muM/s and K(m) = 13.1 mM at pH 5.8 and 25.0 degrees C. The pK values corresponding to the free enzyme are 4.8 and 6.8 and are consistent with carboxyl and imidazole groups as the active ionizing species. These pK values were little changed in the enzyme-substrate intermediate that reacts in the ratedetermining step, suggesting that the ionizing groups are still free in this intermediate. The activation energy corresponding to V/K(m) is 80.6 kJ/mol, and that corresponding to V is 38.7 kJ/mol. The corresponding entropies of activation are 21 J K(-1) mol(-1) and -157 J K(-1) mol(-1), respectively.  相似文献   

19.
Lactobacillus casei cells have been shown previously to utilize two separate binding proteins for the transport of folate and thiamine. Folate transport, however, was found to be strongly inhibited by thiamine in spite of the fact that the folate-binding protein has no measurable affinity for thiamine. This inhibition, which did not fluctuate with intracellular adenosine triphosphate levels, occurred only in cells containing functional transport systems for both vitamins and was noncompetitive with folate but competitive with respect to the level of folate-binding protein. Folate uptake in cells containing optimally induced transport systems for both vitamins was inhibited by thiamine (1 to 10 muM) to a maximum of 45%; the latter value increased to 77% in cells that contained a progressively diminished folate transport system and a normal thiamine system. Cells preloaded with thiamine could transport folate at a normal rate, indicating that the inhibition resulted from the entry of thiamine rather than from its presence in the cell. In a similar fashion, folate (1 to 10 muM) did not interfere with the binding of thiamine to its transport protein, but inhibited thiamine transport (to a maximum of 25%). Competition also extended to biotin, whose transport was strongly inhibited (58% and 73%, respectively) by the simultaneous uptake of either folate or thiamine; biotin, however, had only a minimal effect on either folate or thiamine transport. The nicotinate transport system was unaffected by co-transport with folate, thiamine, or biotin. These results are consistent with the hypothesis that the folate, thiamine, and biotin transport systems of L. casei each function via a specific binding protein, and that they require, in addition, a common component present in limiting amounts per cell. The latter may be a protein required for the coupling of energy to these transport processes.  相似文献   

20.
Active Transport of Biotin in Escherichia coli K-12   总被引:5,自引:3,他引:2       下载免费PDF全文
The transport of [(14)C]biotin into cells of a biotin prototroph, Escherichia coli K-12 strain Y10-1, was investigated. The vitamin taken up by the cells in this strain existed primarily in the free form. Addition of glucose enhanced the rate of uptake six- to eightfold and the steady level was reached in 2 to 3 min resulting in accumulation of biotin against a concentration gradient. The uptake showed marked dependence on temperature (Q(10), 2.3; optimum, 37 C) and pH (optimum 6.6) and was inhibited by iodoacetate. Energy of activation for glucose-dependent uptake was calculated to be 16,200 cal per mol. The rate of biotin uptake with increasing biotin concentrations showed saturation kinetics with an apparent K(m) and V(max) values of 1.4 x 10(-7) M and 6.6 pmol per mg of dry cells per min respectively. The cells also accumulated biotin against a concentration gradient in the absence of added glucose, although at a much lower rate. This accumulation was much more susceptible to inhibition by azide and uncouplers of oxidative phosphorylation suggesting that the energy source was supplied through the electron-transport chain. Inhibition studies with a number of biotin analogues indicated the requirement for an intact ureido ring. The biotin uptake was inhibited in cells grown in biotin-containing medium and was shown to be the result of repression of the transport system, suggesting the control of the biotin transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号