共查询到20条相似文献,搜索用时 15 毫秒
1.
Rigotti DJ Kokona B Horne T Acton EK Lederman CD Johnson KA Manning RS Kane SA Smith WF Fairman R 《Analytical biochemistry》2005,346(2):189-200
We describe a quantitative analysis of Acanthamoeba castellanii myosin II rod domain images collected from atomic force microscope experiments. These images reveal that the rod domain forms a novel filament structure, most likely requiring unusual head-to-tail interactions. Similar filaments are seen also in negatively stained electron microscopy images. Truncated myosins from Acanthamoeba and other model organisms have been visualized before, revealing laterally associated bipolar minifilaments. In contrast, the filament structures that we observe are dominated by axial rather than lateral polymerization. The unusually small features in this structure (1-5 nm) required the development of quantitative and statistical techniques for filament image analysis. These techniques enhance the extraction of features that hitherto have been difficult to ascertain from more qualitative imaging approaches. The heights of the filaments are observed to have a bimodal distribution consistent with the diameters of a single rod domain and a pair of close-packed rod domains. Further quantitative analysis indicates that in-plane association is limited to at most a pair of rod domains. Taken together, this implies that the filaments contain no more than four rod domains laterally associated with one another, somewhat less than that seen in bipolar minifilaments. Analysis of images of the filaments decorated with an anti-FLAG antibody reveals head-to-tail association with mean distances between the antibodies of 75 +/- 15 nm. We consider a set of molecular models to help interpret possible structures of the filaments. 相似文献
2.
Localization of phospholamban in smooth muscle using immunogold electron microscopy 总被引:1,自引:0,他引:1 下载免费PDF全文
Phospholamban, the putative regulator of the Ca2+-ATPase in cardiac sarcoplasmic reticulum, was immunolocalized in canine visceral and vascular smooth muscle. Gently disrupted tissues were labeled with an affinity-purified phospholamban polyclonal antibody and indirect immunogold, using preembedding techniques. The sarcoplasmic reticulum of smooth muscle cells was specifically labeled with patches of immunogold distributed in a nonuniform fashion, while the sarcolemma did not appear to contain any phospholamban. The outer nuclear envelopes were also observed to be heavily labeled with the affinity-purified phospholamban polyclonal antibody. These findings suggest that phospholamban may play a role in the regulation of cytoplasmic and intranuclear calcium levels in smooth muscle cells. 相似文献
3.
Characterization of a second myosin from Acanthamoeba castellanii. 总被引:21,自引:0,他引:21
We purified a 400,000 molecular weight myosin, myosin-II, from Acanthamoeba castellanii. The sequence of ion exchange chromatography, actomyosin precipitation, actin extraction, and gel permeation chromatography yields per 100 g of cells about 11 mg of myosin-II which is 90 to 96% pure. ATPase activity is highest in the presence of Ca2+, but the enzyme is also active in EDTA provided high concentrations of K+ are present. The molecule consists of two 175,000 molecular weight heavy chains, one or two 17,500 molecular weight light chains, and two 16,500 molecular weight light chains. Myosin-II is rich in acidic residues and contains about 32 residues of cysteine/mol. The sedimentation coefficient is 5.9 S. Intrinsic viscosity is 126 cc/g. By equilibrium ultracentrifugation, the molecular weight averages depended upon the initial loading concentration in a way that suggested a 400,000 molecular weight species is in equilibrium with a 200,000 molecular weight species. By electron microscopy the molecule was seen to have two globular heads at one end of a tail 90 nm long. In KCl solutions of less than 0.25 M, the myosin-II tails self-associate to form the backbone of very small (6.6 x 205 nm) bipolar filaments with central bare zones 97 nm long. Myosin-II binds to actin filaments, forming periodic arrowhead-shaped complexes, but its Mg2+ ATPase activity is activated only 50% or less by actin. When radioactive myosin-II is incubated up to 90 min in unlabeled Acanthamoeba homogenates, it is not degraded into smaller fragments, such as the 190,000 molecular weight myosin-I. Our observations and the detailed enzymatic data presented by Maruta and Korn ((1977) J. Biol. Chem. 252, 6501-6509) argue that the smaller Acanthamoeba myosin-I (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem, 248, 4682-2690) does not arise by fragmentation of myosin-II in the homogenate or extract. 相似文献
4.
Quantification and localization of phosphorylated myosin I isoforms in Acanthamoeba castellanii 下载免费PDF全文
《The Journal of cell biology》1995,130(3):591-603
The actin-activated Mg(2+)-ATPase activities of the three myosin I isoforms in Acanthamoeba castellanii are significantly expressed only after phosphorylation of a single site in the myosin I heavy chain. Synthetic phosphorylated and unphosphorylated peptides corresponding to the phosphorylation site sequences, which differ for the three myosin I isoforms, were used to raise isoform-specific antibodies that recognized only the phosphorylated myosin I or the total myosin I isoform (phosphorylated and unphosphorylated), respectively. With these antisera, the amounts of total and phosphorylated isoform were quantified, the phosphomyosin I isoforms localized, and the compartmental distribution of the phosphomyosin isoforms determined. Myosin IA, which was almost entirely in the actin-rich cortex, was 70- 100% phosphorylated and particularly enriched under phagocytic cups. Myosins IB and IC were predominantly associated with plasma membranes and large vacuole membranes, where they were only 10-20% phosphorylated, whereas cytoplasmic myosins IB and IC, like cytoplasmic myosin IA, were mostly phosphorylated (60-100%). Moreover, phosphomyosin IB was concentrated in actively motile regions of the plasma membrane. More than 20-fold more phosphomyosin IC and 10-fold more F-actin were associated with the membranes of contracting contractile vacuoles (CV) than of filling CVs. As the total amount of CV-associated myosin IC remained constant, it must be phosphorylated at the start of CV contraction. These data extend previous proposals for the specific functions of myosin I isozymes in Acanthamoeba (Baines, I.C., H. Brzeska, and E.D. Korn. 1992. J. Cell Biol. 119: 1193-1203): phosphomyosin IA in phagocytosis, phosphomyosin IB in phagocytosis and pinocytosis, and phosphomyosin IC in contraction of the CV. 相似文献
5.
Extracts of Acanthamoeba castellanii contain four myosin-like ATPases (Maruta, H., Gadasi, H., Collins, J.H., and Korn, E.D. (1979) J. Biol. Chem. 254, 3624-3630): double-headed Acanthamoeba myosin II and single-headed Acanthamoeba myosins IA, IB, and IC, which have heavy chains of 170,000, 130,000, 125,000, and 130,000 daltons, respectively, as well as different light chains. In the accompanying paper, evidence is presented that suggests that Acanthamoeba myosin IC is the same molecule as Acanthamoeba myosin IA plus a regulatory 20,000-dalton peptide. This conclusion is confirmed by the identity of the peptide maps obtained by limited proteolysis of the heavy chains of Acanthamoeba myosins IA and IC by Staphylococcus aureus V8 protease. However, peptide maps of the heavy chains of Acanthamoeba myosins IA, IB, and II obtained by limited proteolysis by the Staphylococcus protease and chymotrypsin and by chemical cleavage by cyanogen bromide and cyanylation have few, if any, peptides in common. From this evidence, and the enzymatic and subunit data in the accompanying paper, it is concluded that the three Acanthamoeba myosin isoenzymes, IA (IC), IB, and II, are products of different genes. 相似文献
6.
Localization of cyclic AMP-dependent protein kinase subunits in rat hepatocyte nuclei by immunogold electron microscopy 总被引:3,自引:0,他引:3
We have applied the indirect colloidal immunogold technique to examine the ultrastructural localization of the catalytic subunit C and the regulatory subunits RI and RII of cyclic AMP-dependent protein kinase in rat hepatocyte nuclei before and after glucagon or dibutyryl cyclic AMP administration. The technique allowed the identification and localization of all three subunits in hepatocyte nuclei. Morphometric quantitation of the relative staining density of nuclear subunits indicated an increase of immunogold staining of nuclear catalytic subunit but not of the regulatory subunits after glucagon or dibutyryl cyclic AMP stimulation. The increase of catalytic subunit occurred in a biphasic manner with peak levels 2-30 min and 90-150 min after stimulation. Our experiments represent the first reported use of the immunogold procedure to identify and localize protein kinase subunits in the nucleus. 相似文献
7.
Simultaneous demonstration of multiple antigens by indirect immunofluorescence or immunogold staining 总被引:2,自引:0,他引:2
Summary Available techniques for light and electron microscopical double immunocytochemical staining are all associated with certain problems. We have developed a novel multiple staining procedure, which allows use of antibodies of differing specificities, raised in the same species (e.g. rabbit). Its essential features include 1) saturation of antigenic epitopes on the first layer primary antiserum by second (fluorophor- or gold-) labelled anti-IgG antibodies and 2) denaturation of free anti-IgG binding sites by formaldehyde vapour treatment. Various combinations of gastrin, somatostatin, glucagon, ACTH, growth hormone and enkephalin/endorphin antibodies have been tested at the light and electron microscopical level and have been found to give highly reproducible double- and triple-staining results. The technique has also been evaluated by use of cytochemical paper models. The method is simple and very useful for multiple staining of a wide variety of antigens. 相似文献
8.
Effects of limited tryptic cleavage on the physical and enzymatic properties of myosin II from Acanthamoeba castellanii 总被引:1,自引:0,他引:1
Limited digestion of Acanthamoeba myosin II by trypsin selectively cleaved the 185,000-Da heavy chains into a 73,000-Da peptide containing the catalytic and actin-binding sites and a 112,000-Da peptide containing the regulatory phosphorylatable sites. The light chains were unaffected. The proteolytic products remained associated and formed bipolar filaments that were very similar in appearance to filaments of native myosin by negative staining electron microscopy. Filaments of trypsin-cleaved, dephosphorylated myosin, however, had a smaller sedimentation coefficient than filaments of native dephosphorylated myosin. Trypsin-cleaved dephosphorylated myosin retained complete Ca2+-ATPase activity but had no actin-activated ATPase activity under conditions that are optimal for native, dephosphorylated myosin (pH 7.0, 4 mM MgCl2, 30 degrees C or pH 6.4, 1 mM MgCl2, 30 degrees C). Trypsin-cleaved dephosphorylated myosin had higher actin-activated ATPase activity at pH 6.0 and 1 mM MgCl2 than undigested dephosphorylated myosin which is appreciably inhibited under these conditions. Trypsin-cleaved, dephosphorylated myosin inhibited the actin-activated ATPase activity of native, dephosphorylated myosin when both were present in the same co-polymers, when enzymatic activity was assayed at pH 7.0, 4 mM MgCl2, and 30 degrees C, but this inhibition was overcome by raising the MgCl2 to 6 mM. These results provide additional evidence that regulation of acanthamoeba myosin II occurs at the filament level and that, under most conditions of assay, the heavy chains must be intact and the regulatory serines unphosphorylated for actin-activated ATPase activity to be maximally expressed. 相似文献
9.
Localization and specificity of the phospholipid and actin binding sites on the tail of Acanthamoeba myosin IC 下载免费PDF全文
We used bacterially expressed beta-galactosidase fusion proteins to localize the phospholipid binding domain of Acanthamoeba myosin IC to the region between amino acids 701 and 888 in the NH2-terminal half of the tail. Using a novel immobilized ligand lipid binding assay, we determined that myosin I can bind to several different acidic phospholipids, and that binding requires a minimum of 5 mol% acidic phospholipid in a neutral lipid background. The presence of di- and triglycerides and sterols in the lipid bilayer do not contribute to the affinity of myosin I for membranes. We confirm that the ATP-insensitive actin binding site is contained in the COOH-terminal 30 kD of the tail as previously shown for Acanthamoeba myosin IA. We conclude that the association of the myosin IC tail with acidic phospholipid head groups supplies much of the energy for binding myosin I to biological membranes, but probably not specificity for targeting myosin I isoforms to different cellular locations. 相似文献
10.
Trophozoites and cysts of Acanthamoeba castellanii were exposed to chlorhexidine diacetate (CHA) and polyhexamethylene biguanide (PHMB); changes in cell ultrastructure and surface structure were examined by both transmission and scanning electron microscopy. PHMB caused a greater degree of structural and membrane damage; the cytoplasmic contents were severely depleted and there were clusters of densely stained precipitates on the cell surface. Concentrations of CHA greater than 100 microg ml(-1) produced shrinkage from the cyst wall. At high concentrations, PHMB induced a slight withdrawal of the cytoplasm from the wall and, unlike CHA, induced swelling of the cysts. These findings do not define the mechanisms of action of CHA and PHMB, but provide evidence that a major target site for both agents is the plasma membrane. However, additional intracellular damage undoubtedly contributes to the lethal effects. The greater resistance of cysts may be associated with reduced biguanide uptake. 相似文献
11.
Purification from Dictyostelium discoideum of a low-molecular-weight myosin that resembles myosin I from Acanthamoeba castellanii 总被引:23,自引:0,他引:23
G P C?té J P Albanesi T Ueno J A Hammer E D Korn 《The Journal of biological chemistry》1985,260(8):4543-4546
A low-molecular-weight myosin has been purified 1500-fold from extracts of Dictyostelium discoideum, based on the increase in K+,EDTA-ATPase specific activity. The purified enzyme resembles the single-headed, low-molecular-weight myosins IA and IB from Acanthamoeba castellanii, and differs from the conventional two-headed, high-molecular-weight myosin previously isolated from Dictyostelium, in several ways. It has higher K+,EDTA-ATPase activity than Ca2+-ATPase activity; it has a native molecular mass of about 150,000 and a single heavy chain of about 117,000; the 117,000-dalton heavy chain is phosphorylated by Acanthamoeba myosin I heavy chain kinase; phosphorylation of its heavy chain enhances its actin-activated Mg2+-ATPase activity; and the 117,000-dalton heavy chain reacts with antibodies raised against the heavy chain of Acanthamoeba myosin IA. None of these properties is shared by the low-molecular-weight active fragment that can be produced by chymotryptic digestion of conventional Dictyostelium myosin. We conclude that Dictyostelium contains an enzyme of the myosin I type previously isolated only from Acanthamoeba. 相似文献
12.
Trophozoites and cysts of Acanthamoeba castellanii were exposed to chlorhexidine diacetate (CHA) and polyhexamethylene biguanide (PHMB); changes in cell ultrastructure and surface structure were examined by both transmission and scanning electron microscopy. PHMB caused a greater degree of structural and membrane damage; the cytoplasmic contents were severely depleted and there were clusters of densely stained precipitates on the cell surface. Concentrations of CHA greater than 100 μg ml−1 produced shrinkage from the cyst wall. At high concentrations, PHMB induced a slight withdrawal of the cytoplasm from the wall and, unlike CHA, induced swelling of the cysts. These findings do not define the mechanisms of action of CHA and PHMB, but provide evidence that a major target site for both agents is the plasma membrane. However, additional intracellular damage undoubtedly contributes to the lethal effects. The greater resistance of cysts may be associated with reduced biguanide uptake. 相似文献
13.
Summary A sialomucin from the mouse submandibular gland was localized in the gland by indirect immunofluorescence. Fluorescence was localized over the acinar cells and, to a lesser extent, in the lumen of the ducts. The mucin antiserum did not show cross-reactivity with cells from the sublingual gland or with other mucous-producing cells from the respiratory and gastrointestinal tracts of the mouse, or with salivary gland tissue of the rat. The sialomucin lacks both sulphate andl-fucose. Localization of a mucin with such a composition, within acinar cells of the mouse submandibular gland, is consistent with previous observations from histochemistry and autoradiography. 相似文献
14.
Purification and characterization of a myosin I heavy chain kinase from Acanthamoeba castellanii 总被引:5,自引:0,他引:5
In previous work from this laboratory, a partially purified protein kinase from the soil amoeba Acanthamoeba castellanii was shown to phosphorylate the heavy chain of the two single-headed Acanthamoeba myosin isoenzymes, myosin IA and IB, resulting in a 10- to 20-fold increase in their actin-activated Mg2+-ATPase activities (Maruta, H., and Korn, E.D. (1977) J. Biol. Chem. 252, 8329-8332). A myosin I heavy chain kinase has now been purified to near homogeneity from Acanthamoeba by chromatography on DE-52 cellulose, phosphocellulose, and Procion red dye, followed by chromatography on histone-Sepharose. Myosin I heavy chain kinase contains a single polypeptide of 107,000 Da by electrophoretic analysis. Molecular sieve chromatography yields a Stokes radius of 4.1 nm, consistent with a molecular weight of 107,000 for a native protein with a frictional ratio of approximately 1.3:1. The kinase catalyzes the incorporation of 0.9 to 1.0 mol of phosphate into the heavy chain of both myosins IA and IB. Phosphoserine has been shown to be the phosphorylated amino acid in myosin IB. The kinase has highest specific activity toward myosin IA and IB, about 3-4 mumol of phosphate incorporated/min/mg (30 degrees C) at concentrations of myosin I that are well below saturating levels. The kinase also phosphorylates histone 2A, isolated smooth muscle light chains, and, to a very small extent, casein, but has no activity toward phosvitin or myosin II, a third Acanthamoeba myosin isoenzyme with a very different structure from myosin IA and IB. Myosin I heavy chain kinase requires Mg2+ but is not dependent on Ca2+, Ca2+/calmodulin, or cAMP for activity. The kinase undergoes an apparent autophosphorylation. 相似文献
15.
Purification and characterization of a third isoform of myosin I from Acanthamoeba castellanii 总被引:7,自引:0,他引:7
A third isoform of myosin I has been isolated from Acanthamoeba and designated myosin IC. Peptide maps and immunoassays indicate that myosin IC is not a modified form of myosin IA, IB, or II. However, myosin IC has most of the distinctive properties of a myosin I. It is a globular protein of native Mr approximately 162,000, apparently composed of a single 130-kDa heavy chain and a pair of 14-kDa light chains. It is soluble in MgATP at low ionic strength, conditions favoring filament assembly by myosin II. Myosin IC has high Ca2+- and (K+,EDTA)-ATPase activities. Its low Mg2+-ATPase activity is stimulated to a maximum rate of 20 s-1 by the addition of F-actin if its heavy chain has been phosphorylated by myosin I heavy chain kinase. The dependence of the Mg2+-ATPase activity of myosin IC on F-actin concentration is triphasic; and, at fixed concentrations of F-action, this activity increases cooperatively as the concentration of myosin IC is increased. These unusual kinetics were first demonstrated for myosins IA and IB and shown to be due to the presence of two actin-binding sites on each heavy chain which enable those myosins I to cross-link actin filaments. Myosin IC is also capable of cross-linking F-actin, which, together with the kinetics of its actin-activated Mg2+-ATPase activity, suggests that it, like myosins IA and IB, possesses two independent actin-binding domains. 相似文献
16.
Serrano-Luna Jde J Cervantes-Sandoval I Calderón J Navarro-García F Tsutsumi V Shibayama M 《Canadian journal of microbiology》2006,52(1):16-23
Acanthamoeba spp. are free-living amoebae that cause amoebic granulomatous encephalitis, skin lesions, and ocular amoebic keratitis in humans. Several authors have suggested that proteases could play a role in the pathogenesis of these diseases. In the present work, we performed a partial biochemical characterization of proteases in crude extracts of Acanthamoeba spp. and in conditioned medium using 7.5% SDS-PAGE copolymerized with 0.1% m/v gelatin as substrate. We distinguished a total of 17 bands with proteolytic activity distributed in two species of Acanthamoeba. The bands ranged from 30 to 188 kDa in A. castellanii and from 34 to 144 kDa in A. polyphaga. Additionally, we showed that the pattern of protease activity differed in the two species of Acanthamoeba when pH was altered. By using protease inhibitors, we found that the proteolytic activities belonged mostly to the serine protease family and secondly to cysteine proteases and that the proteolytic activities from A. castellanii were higher than those in A. polyphaga. Furthermore, aprotinin was found to inhibit crude extract protease activity on Madin-Darby canine kidney (MDCK) monolayers. These data suggest that protease patterns could be more complex than previously reported. 相似文献
17.
18.
19.
S Ellis M Killender R L Anderson 《The journal of histochemistry and cytochemistry》2000,48(3):321-332
The heat shock proteins are a family of stress-inducible proteins that act as molecular chaperones for nascent proteins and assist in protection and repair of proteins whose conformation is altered by stress. HSP72 and HSP73 are two major cytosolic/nuclear stress proteins of mammalian cells, with extensive sequence homology. HSP73 is constitutively expressed, whereas HSP72 is highly stress-inducible. However, it is unclear why two isoforms are expressed and whether these two proteins have different functions in the cell. To assist in the delineation of function, we have completed a detailed study of the localization of HSP72 and HSP73 in the cell before and after heat stress, using two different methods of detection. By indirect immunohistochemistry, the localization of these two proteins is similar, cytoplasmic and nuclear in nonstressed cells with a translocation to nucleoli immediately after heat. By the more sensitive immunogold electron microscopy technique, differences in localization were noted. In nonstressed cells, HSP72 was primarily nuclear, localized in heterochromatic regions and in nucleoli. HSP73 was distributed throughout the cell, with most cytoplasmic label associated with mitochondria. Mitotic chromosomes were also heavily labeled. After stress, HSP72 concentrated in nuclei and nucleoli and HSP73 localized to nuclei, nucleoli, and cytoplasm, with increased label over mitochondria. These differences in localization suggest that the HSP72 and HSP73 may associate with different proteins or complexes and hence have different but overlapping functions in the cell. 相似文献
20.
A transient spiral system of fibers in the cortex of fertilized eggs of the sea urchin Strongylocentrotus purpuratus was examined with indirect immunofluorescence microscopy and found to contain tubulin. Electron microscopy identified the tubulin-containing bands as bundles of up to 40 or more microtubules. These cortical microtubules, which are initially radial, form a spiral array about the time of pronuclear fusion. This basket-like structure, at a depth of 10–15 μm below the cell surface, reaches a peak of development about 45 min after fertilization and disappears before the streak stage at 70 min, in a division cycle of slightly more than 2 h. Possible functions of the cortical microtubules, which appear to be independent of the interphase asters, are discussed. 相似文献