共查询到20条相似文献,搜索用时 0 毫秒
1.
Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway 总被引:13,自引:0,他引:13
Serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) has been implicated as a negative regulator of insulin signaling. Prior studies have indicated that this negative regulation by protein kinase C involves the mitogen-activated protein kinase and phosphorylation of serine 612 in IRS-1. In the present studies, the negative regulation by platelet-derived growth factor (PDGF) was compared with that induced by endothelin-1, an activator of protein kinase C. In contrast to endothelin-1, the inhibitory effects of PDGF did not require mitogen-activated protein kinase or the phosphorylation of serine 612. Instead, three other serines in the phosphorylation domain of IRS-1 (serines 632, 662, and 731) were required for the negative regulation by PDGF. In addition, the PDGF-activated serine/threonine kinase called Akt was found to inhibit insulin signaling. Moreover, this inhibition required the same IRS-1 serine residues as the inhibition by PDGF. Finally, the negative regulatory effects of PDGF and Akt were inhibited by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), one of the downstream targets of Akt. These studies implicate the phosphatidylinositol 3-kinase/Akt kinase cascade as an additional negative regulatory pathway for the insulin signaling cascade. 相似文献
2.
Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation 总被引:7,自引:0,他引:7 下载免费PDF全文
Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85alpha/p110alpha PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling. 相似文献
3.
Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. 总被引:15,自引:8,他引:7 下载免费PDF全文
Insulin rapidly stimulates protein synthesis in a wide variety of tissues. This stimulation is associated with phosphorylation of several translational initiation and elongation factors, but little is known about the signaling pathways to these events. To study these pathways, we have used a myeloid progenitor cell line (32D) which is dependent on interleukin 3 but insensitive to insulin because of the very low levels of insulin receptor (IR) and the complete lack of insulin receptor substrate (IRS)-signaling proteins (IRS-1 and IRS-2). Expression of more IR permits partial stimulation of mitogen-activated protein kinase by insulin, and expression of IRS-1 alone mediates insulin stimulation of the 70-kDa S6 kinase (pp70S6K) by the endogenous IR. However, expression of both IR and IRS-1 is required for stimulation of protein synthesis. Moreover, this effect requires activation of phosphatidylinositol 3-kinase (PI3K), as determined by wortmannin inhibition and the use of an IRS-1 variant lacking all Tyr residues except those which activate PI3K. Stimulation of general protein synthesis does not involve activation by IRS-1 of GRB-2-SOS-p21ras or SH-PTP2, since IRS-1 variants lacking the SH2-binding Tyr residues for these proteins are fully active. Nor does it involve pp70S6K, since rapamycin, while strongly inhibiting the synthesis of a small subset of growth-regulated proteins, only slightly inhibits total protein synthesis. Recruitment of mRNAs to the ribosome is enhanced by phosphorylation of eIF4E, the cap-binding protein, and PHAS-I, a protein that specifically binds eIF4E. The behavior of cell lines containing IRS-1 variants and inhibition by wortmannin and rapamycin indicate that the phosphorylation of both proteins requires IRS-1-mediated stimulation of PI3K and pp70S6K but not mitogen-activated protein kinase or SH-PTP2. 相似文献
4.
Mammalian target of rapamycin complex 1 (mTORC1) phosphorylates proteins such as eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) and the S6 kinases. These substrates contain short sequences, termed TOR signalling (TOS) motifs, which interact with the mTORC1 component raptor. Phosphorylation of 4E-BP1 requires an additional feature, termed the RAIP motif (Arg-Ala-Ile-Pro). We have analysed the interaction of 4E-BP1 with raptor and the amino acid residues required for functional RAIP and TOS motifs, as assessed by raptor binding and the phosphorylation of 4E-BP1 in human cells. Binding of 4E-BP1 to raptor strongly depends on an intact TOS motif, but the RAIP motif and additional C-terminal features of 4E-BP1 also contribute to this interaction. Mutational analysis of 4E-BP1 reveals that isoleucine is a key feature of the RAIP motif, that proline is also very important and that there is greater tolerance for substitution of the first two residues. Within the TOS motif, the first position (phenylalanine in the known motifs) is most critical, whereas a wider range of residues function in other positions (although an uncharged aliphatic residue is preferred at position three). These data provide important information on the structural requirements for efficient signalling downstream of mTORC1. 相似文献
5.
Energy depletion activates AMP-activated protein kinase (AMPK) and inhibits cell growth via TSC2-dependent suppression of mTORC1 signaling. Long term energy depletion also induces apoptosis by mechanisms that are not well understood to date. Here we show that AMPK, activated by energy depletion, inhibited cell survival by binding to and phosphorylating IRS-1 at Ser-794. Phosphorylation of IRS-1 at this site inhibited phosphatidylinositol 3-kinase/Akt signaling, suppressed the mitochondrial membrane potential, and promoted apoptosis. Of the treatments promoting energy depletion, glucose deprivation, hypoxia, and inhibition of ATP synthesis in the mitochondria stimulated phosphorylation of IRS-1 at Ser-794 via an LKB1/AMPK-dependent manner, whereas oxidative stress and 2-deoxyglucose stimulated phosphorylation at this site via a Ca2+/calmodulin-dependent protein kinase kinase beta/AMPK axis. These data define a novel pathway that cooperates with other adaptive mechanisms to formulate the cellular response to energy depletion. 相似文献
6.
7.
C H Chung H C Peng T F Huang 《Biochemical and biophysical research communications》2001,285(3):689-695
Aggretin purified from Calloselasma rhodostoma venom was previously identified as alpha(2)beta(1) agonist in triggering platelet aggregation, and exists as a heterodimer sharing a great homologous sequence to GPIb binding proteins. We show here that binding to GPIb is also required in aggregation-inducing activity of aggretin. A2-IIE10, an anti-integrin alpha(2) monoclonal antibody, delayed platelet aggregation while agkistin, a GPIb antagonist, only slightly inhibited platelet aggregation caused by aggretin. However, the aggretin-induced platelet aggregation was completely abolished by a combination of A2-IIE10 and agkistin. Either A2-IIE10 or agkistin significantly inhibited the binding of FITC-aggretin toward fixed platelets. Aggretin and collagen induced a similar signal transduction in platelets involving a time-dependent tyrosine phosphorylation of p125(FAK) and PLCgamma2, but aggretin caused a much-delayed tyrosine-phosphorylation of PI 3-kinase compared with collagen. LY294002, a PI 3-kinase inhibitor, showed a significant inhibitory effect on collagen, but not aggretin-stimulated platelet aggregation. These findings indicate aggretin induces platelet aggregation via binding of alpha(2)beta(1) and GPIb, causing phosphorylation of p125(FAK) and PLCgamma2 leading to platelet activation without the involvement of PI 3-kinase activation. 相似文献
8.
Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation 总被引:4,自引:0,他引:4 下载免费PDF全文
Wang X Yue P Chan CB Ye K Ueda T Watanabe-Fukunaga R Fukunaga R Fu H Khuri FR Sun SY 《Molecular and cellular biology》2007,27(21):7405-7413
The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors' effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycin's ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. In addition, we also suggest an effective therapeutic strategy for enhancing mTOR-targeted cancer therapy by cotargeting mTOR signaling and Mnk/eIF4E phosphorylation. 相似文献
9.
Petegnief V Font-Nieves M Martín ME Salinas M Planas AM 《The Biochemical journal》2008,411(3):667-677
Cerebral ischaemia causes long-lasting protein synthesis inhibition that is believed to contribute to brain damage. Energy depletion promotes translation inhibition during ischaemia, and the phosphorylation of eIF (eukaryotic initiation factor) 2alpha is involved in the translation inhibition induced by early ischaemia/reperfusion. However, the molecular mechanisms underlying prolonged translation down-regulation remain elusive. NMDA (N-methyl-D-aspartate) excitotoxicity is also involved in ischaemic damage, as exposure to NMDA impairs translation and promotes the synthesis of NO (nitric oxide), which can also inhibit translation. In the present study, we investigated whether NO was involved in NMDA-induced protein synthesis inhibition in neurons and studied the underlying molecular mechanisms. NMDA and the NO donor DEA/NO (diethylamine-nitric oxide sodium complex) both inhibited protein synthesis and this effect persisted after a 30 min exposure. Treatments with NMDA or NO promoted calpain-dependent eIF4G cleavage and 4E-BP1 (eIF4E-binding protein 1) dephosphorylation and also abolished the formation of eIF4E-eIF4G complexes; however, they did not induce eIF2alpha phosphorylation. Although NOS (NO synthase) inhibitors did not prevent protein synthesis inhibition during 30 min of NMDA exposure, they did abrogate the persistent inhibition of translation observed after NMDA removal. NOS inhibitors also prevented NMDA-induced eIF4G degradation, 4E-BP1 dephosphorylation, decreased eIF4E-eIF4G-binding and cell death. Although the calpain inhibitor calpeptin blocked NMDA-induced eIF4G degradation, it did not prevent 4E-BP1 dephosphorylation, which precludes eIF4E availability, and thus translation inhibition was maintained. The present study suggests that eIF4G integrity and hyperphosphorylated 4E-BP1 are needed to ensure appropriate translation in neurons. In conclusion, our data show that NO mediates NMDA-induced persistent translation inhibition and suggest that deficient eIF4F activity contributes to this process. 相似文献
10.
The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway 总被引:7,自引:0,他引:7
McMullen JR Shioi T Huang WY Zhang L Tarnavski O Bisping E Schinke M Kong S Sherwood MC Brown J Riggi L Kang PM Izumo S 《The Journal of biological chemistry》2004,279(6):4782-4793
11.
Gao N Ding M Zheng JZ Zhang Z Leonard SS Liu KJ Shi X Jiang BH 《The Journal of biological chemistry》2002,277(35):31963-31971
12.
Beta ig-h3 is an extracellular matrix protein whose expression is highly induced by transforming growth factor (TGF)-beta1. Whereas beta ig-h3 is known to mediate keratinocyte adhesion and migration, its effects on keratinocyte differentiation remain unclear. In the present study, it was demonstrated that expression of both beta ig-h3 and TGF-beta1 was enhanced during keratinocyte differentiation and that expression of the former was strongly induced by that of the latter. This study also asked whether changes in beta-h3 expression would affect keratinocyte differentiation. Indeed, down-regulation of beta ig-h3 by transfection with antisense beta ig-h3 cDNA constructs effectively inhibited keratinocyte differentiation by decreasing the promoter activities and thus expression of involucrin and transglutaminase. The result was an approximately 2-fold increase in mitotic capacity of the cells. Conversely, overexpression of beta ig-h3, either by transfection with beta ig-h3 expression plasmids or by exposure to recombinant beta ig-h3, enhanced keratinocyte differentiation by inhibiting cell proliferation and concomitantly increasing involucrin and transglutaminase expression. Recombinant beta ig-h3 also promoted keratinocyte adhesion through interaction with integrin alpha3beta1. Changes in beta ig-h3 expression did not affect intracellular calcium levels. Subsequent analysis revealed not only induction of Akt phosphorylation by recombinant beta ig-h3 but also blockage of Akt phosphorylation by LY294002, an inhibitor of phosphatidylinositol 3-kinase. Taken together, these findings indicate that enhanced beta ig-h3, induced by enhanced TGF-beta during keratinocyte differentiation, provoked cell differentiation by enhancing involucrin and transglutaminase expression through the integrin alpha3beta1 and phosphatidylinositol 3-kinase/Akt signaling pathway. Lastly, it was observed that beta ig-h3-mediated keratinocyte differentiation was caused by promotion of cell adhesion and not by calcium regulation. 相似文献
13.
Chie Nishioka Takayuki Ikezoe Jing Yang Akihito Yokoyama 《Apoptosis : an international journal on programmed cell death》2010,15(7):795-804
We previously showed that the MEK inhibitor AZD6244 induced apoptosis in acute myelogenous leukemia (AML) HL60 cells. However, the mechanisms of AZD6244 to induce apoptosis remain to be fully elucidated. This study found that exposure of HL60 cells to AZD6244 down-regulated the levels of phosphor (p)-4E-binding protein 1 (4E-BP1), a substrate of mammalian target of rapamycin complex 1 (mTORC1), and anti-apoptotic protein Mcl-1. On the other hand, exposure of EOL-1 and MOLM13 cells to AZD6244 failed to induce apoptosis and levels of p-4E-BP1 and Mcl-1 were not down-regulated in these cells. These observations prompted us to hypothesize that down-regulation od 4E-BP1 and Mcl-1 might play an important role in AZD6244-mediated apoptosis. As expected, down-regulation of 4E-BP1 by an siRNA sensitized EOL-1 cells to AZD6244-mediated apoptosis in parallel with down-regulation of Mcl-1. Moreover, we found that blockade of mTORC1 by RAD001 synergistically enhanced the action of AZD6244 in leukemia cells. 相似文献
14.
15.
Murakami T Takagi H Suzuma K Suzuma I Ohashi H Watanabe D Ojima T Suganami E Kurimoto M Kaneto H Honda Y Yoshimura N 《The Journal of biological chemistry》2005,280(36):31841-31849
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress. 相似文献
16.
This study presents evidence that phosphoinositide 3-kinase (PI3K) plays a concerted role with phospholipase Cgamma in initiating antigen-mediated Ca(2+) signaling in mast cells via a phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3))-sensitive Ca(2+) entry pathway. Exogenous PI(3,4,5)P(3) at concentrations close to its physiological level induces instantaneous Ca(2+) influx into RBL-2H3 cells. This PI(3,4,5)P(3)-induced intracellular Ca(2+) increase is independent of phospholipase C activity or the depletion of internal stores. Moreover, inhibition of PI3K by LY294002 or by overexpression of the dominant negative inhibitor Deltap85 suppresses the Ca(2+) response to the cross-linking of the high affinity receptor for IgE (FcepsilonRI). Concomitant treatment of RBL-2H3 cells with LY294002 or Deltap85 and 2-aminoethyl diphenylborate, a cell-permeant antagonist of D-myo-inositol 1,4,5-trisphosphate receptors, abrogates antigen-induced Ca(2+) signals, whereas either treatment alone gives rise to partial inhibition. Conceivably, PI(3,4,5)P(3)-sensitive Ca(2+) entry and capacitative Ca(2+) entry represent major Ca(2+) influx pathways that sustain elevated [Ca(2+)]i to achieve optimal physiological responses. This study also refutes the second messenger role of D-myo-inositol 1,3,4,5-tetrakisphosphate in regulating FcepsilonRI-mediated Ca(2+) response. Considering the underlying mechanism, our data suggest that PI(3,4,5)P(3) directly stimulates a Ca(2+) transport system in plasma membranes. Together, these data provide a molecular basis to account for the role of PI3K in the regulation of FcepsilonRI-mediated degranulation in mast cells. 相似文献
17.
Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway 总被引:3,自引:0,他引:3 下载免费PDF全文
Latent membrane protein 2A (LMP2A) blocks B-cell receptor signal transduction in vitro by binding the Syk and Lyn protein tyrosine kinases. As well as blocking B-cell signal transduction, LMP2A has been shown to activate the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway, which acts as a survival signal in both B cells and epithelial cells. Transforming growth factor beta 1 (TGF-beta 1) is a multifunctional cytokine that plays important roles in regulating cell growth and differentiation in many biological systems. The loss of the growth-inhibitory response to the TGF-beta 1 signal is found in many cancers and is widely thought to promote tumor development. In this study, we found that LMP2A induced the phosphorylation of Akt (serine 473) in Burkitt's lymphoma cell line Ramos and in gastric carcinoma cell line HSC-39 and partially enhanced cell viability following TGF-beta 1 treatment. In addition, LMP2A partially inhibited TGF-beta 1-induced DNA fragmentation and cleavage of poly(ADP-ribose) polymerase (PARP). In the presence of LY294002, an inhibitor of PI3-K, the LMP2A-mediated inhibitory effects on TGF-beta 1-induced DNA fragmentation and cleavage of PARP were alleviated. Furthermore, LMP2A did not alter the levels of expression of type I and type II TGF-beta 1 receptors. Taken together, these results suggest that LMP2A may inhibit TGF-beta 1-mediated apoptosis through activation of the PI3-K/Akt pathway. 相似文献
18.
The B cell antigen receptor activates the Akt (protein kinase B)/glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. 总被引:11,自引:0,他引:11
M R Gold M P Scheid L Santos M Dang-Lawson R A Roth L Matsuuchi V Duronio D L Krebs 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(4):1894-1905
19.
Bertola A Bonnafous S Cormont M Anty R Tanti JF Tran A Le Marchand-Brustel Y Gual P 《The Journal of biological chemistry》2007,282(14):10325-10332
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes. 相似文献
20.
Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation 总被引:1,自引:0,他引:1 下载免费PDF全文
Mazroui R Sukarieh R Bordeleau ME Kaufman RJ Northcote P Tanaka J Gallouzi I Pelletier J 《Molecular biology of the cell》2006,17(10):4212-4219
Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation. 相似文献