首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Auxin-mediated elongation growth of maize coleoptile segments is inhibited by reducing the O2 concentration in the incubation medium to GT 100 μmol . 1?1. The half-maximal elongation rate is reached at 40 μmol . 1?1 O2, i.e. about two orders of magnitude higher than with mitochondrial respiration. O2 uptake of the segments measured under similar conditions with an O2 electrode shows a very similar dependence on O2 concentration. Auxin increases O2 uptake by 5–10% when it induces growth. About 40% of the O2 uptake is insensitive to inhibition by KCN. Auxin has no effect on O2 uptake in the presence of KCN. The possibility that auxin-mediated elongation growth depends on a KCN-sensitive oxidative process, other than cytochrome c oxidase-catalyzed respiration, is discussed.  相似文献   

2.
BR促进小麦胚芽鞘伸长的生理活性大于IAA,但高浓度的促进现象不如IAA明显。BR刺激乙烯生成与浓度相关。BR和IAA混合处理,对芽鞘切段的伸长、乙烯释放和H~+分泌都表现了加成作用。这二种激素在作用时间上有明显的差别,BR作用的滞后期更为清楚。BR有拮抗ABA对小麦胚芽鞘切段伸长的抑制作用。  相似文献   

3.
4.
2,6-Dichlorobenzonitrile (DCB) inhibited only increases in levelsof the cellulosic polysac-charides while monensin and galactoseinhibited increases in levels of both the cellulosic and thematrix polysaccharides in intact rice coleoptiles that weresubmerged in water. Elongation growth of rice coleoptiles wassuppressed by DCB at 10–6 M, by monensin at 10–7M, and by galactose at 3 ? 10–3 M and above. Thus, thesynthesis of both the cellulosic and the matrix polysaccharidesis essential for the elongation of intact rice coleoptiles.These inhibitors increased the minimum stress-relaxation timeand the relaxation rate and they decreased the mechanical extensibilityof the cell wall, indicating that they inhibited cell wall loosening.The concentrations of the inhibitors required for inhibitionof cell wall loosening were higher than those for suppressionof elongation. The data suggest that polysaccharides synthesisplays two roles in elongation. It keeps the cell wall in a "loosened"condition by producing new extensible cell walls, while itsother role is probably related to the fixation or extensionof polymers already present in the cell wall. (Received November 15, 1990; Accepted May 23, 1991)  相似文献   

5.
6.
7.
Auxin induced growth and decreased the hexosamine content ofthe cell walls of rice coleoptile sections. Indole-3-aceticacid (IAA) at 10–5 M inhibited the incorporation of 14C-glucosamineinto the cell walls. IAA did not affect the 14C-incorporationinto the cytoplasm, while inhibitors of glycoprotein synthesis,unicamycin and monensin, suppressed the incorporation into boththe cytoplasm and the cell walls. The radioactivity due to labeledglucosamine in the cell walls increased during the chase, butthis increase was inhibited by IAA. Among the cell wall fractions,the increase in radioactivity and its inhibition by IAA wereconspicuous in the hemicellulose I fraction. The inhibitoryeffect of IAA on glucosamine incorporation into the cell wallswas observed even in the presence of 0.15 M mannitol solutionwhich completely suppressed the IAA-induced growth. These resultssuggest that auxin induces growth at least partly by inhibitingthe transport of asparagine-linked glycoproteins from the cytoplasmto the cell walls. 1 Present address: Department of Biology, Faculty of Science,Osaka City University, Sumiyoshi-ku, Osaka 558, Japan (Received July 23, 1986; Accepted December 22, 1986)  相似文献   

8.
The peripheral cell wall(s) of stems and coleoptiles are 6 to 20 times thicker than the walls of the inner tissues. In coleoptiles, the outer wall of the outer epidermis shows a multilayered, helicoidal cellulose architecture, whereas the walls of the parenchyma and the outer wall of the inner epidermis are unilayered. In hypocotyls and epicotyls both the epidermal and some subepidermal walls are multilayered, helicoidal structures. The walls of the internal tissues (inner cortex, pith) are unilayered, with cellulose microfibrils oriented primarily transversely. Peeled inner tissues rapidly extend in water, whereas the outer cell layer(s) contract on isolation. This indicates that the peripheral walls limit elongation of the intact organ. Experiments with the pressure microprobe indicate that the entire organ can be viewed as a giant, turgid cell: the extensible inner tissues exert a pressure (turgor) on the peripheral wall(s), which bear the longitudinal wall stress of the epidermal and internal cells. Numerous studies have shown that auxin induces elongation of isolated, intact sections by loosening of the growth-limiting peripheral cell wall(s). Likewise, the effect of light on reduction of stem elongation and cell wall extensibility in etiolated seedlings is restricted to the peripheral cell layers of the organ. The extensible inner tissues provide the driving force (turgor pressure), whereas the rigid peripheral wall(s) limit, and hence control, the rate of organ elongation.  相似文献   

9.
Rehm MM  Cline MG 《Plant physiology》1973,51(5):946-948
An angular position-sensing transducer was used to make continuous measurements of acid-induced elongation of Avena sativa coleoptile segments. Elongation rates at pH 4.5 (5 mm succinate buffer) were about 5-fold greater than those at pH 6.0. Buffered 0.1 mm abscisic acid produced a partial decrease of the growth rate. Pretreatments with abscisic acid buffered at pH 6.0 usually caused a further reduction of the elongation response when the coleoptile segments were subsequently placed in buffer at pH 4.5 containing abscisic acid. Abscisic acid did not completely prevent the pH effect in any of these experiments, and the brief latent period of the pH response was not affected by abscisic acid treatments. At pH 4.5, where the inhibitory effect of ABA was maximum, low pH-induced elongation was also inhibited by KCN and HgCl2. These results suggest that pH-(4.5) induced elongation in this system may be dependent on some metabolic processes and that abscisic acid-induced inhibition of this elongation may involve an interaction with these processes.  相似文献   

10.
11.
深水稻节间伸长生长的机制   总被引:9,自引:1,他引:8  
宋平  周燮 《植物学通报》2000,17(1):46-51
淹水可促进深水稻节间快速伸长生长,其主要受内源赤霉素、乙烯、脱落酸等激素信号分子的调控。淹水能促进深水稻植物株体内乙烯、赤霉素的生物合成、抑制脱落酸的生物合成,外源乙烯、赤霉素会加速深水稻节间伸长,而外源脱落酸抑制淹水节间的伸长,其中赤霉素是直接作用因子,乙烯能降低内源脱落酸水平、增加节地赤霉素的敏感性;还与渗透调节、细胞壁组份如膨胀素等有关,淹水及赤霉素都大大增加了膨胀素基因的表达。并就深水稻的  相似文献   

12.
宋平  周燮 《植物学报》2000,17(1):46-51
淹水可促进深水稻节间快速伸长生长,其主要受内源赤霉素、乙烯、脱落酸等激素信号分子的调控。淹水能促进深水稻植株体内乙烯、赤霉素的生物合成、抑制脱落酸的生物合成,外源乙烯、赤霉素会加速深水稻节间伸长,而外源脱落酸抑制淹水节间的伸长,其中赤霉素是直接作用因子,乙烯能降低内源脱落酸水平、增加节间对赤霉素的敏感性;还与渗透调节、细胞壁组份如膨胀素等有关,淹水及赤霉素都大大增加了膨胀素基因的表达。并就深水稻的进一步研究进行了展望。  相似文献   

13.
14.
水稻茎伸长生长与植物激素   总被引:2,自引:0,他引:2  
季兰  杨仁崔 《植物学报》2002,19(1):109-115
赤霉素(GA)、生长素(IAA)、脱落酸(ABA)和乙烯影响水稻茎(或节间)的伸长,其中赤霉素与水稻茎伸长生长的关系最密切。GA1是植物体内刺激茎伸长的至关重要的赤霉素, GA3已作为最常用的外源激素诱导水稻的节间伸长。水稻茎秆的伸长受激素浓度和敏感性的双重控制,激素浓度或敏感性任一方的改变都有可能导致株高的变异。赤霉素如此显著地促进茎的伸长可能与增加细胞分裂和促使细胞壁松弛有关。而生长素主要促进细胞伸长。植物激素促进水稻茎伸长的分子机理的研究已有较大的进展,预期这方面的研究和应用在未来几年内将有新的突破。  相似文献   

15.
水稻茎伸长生长与植物激素   总被引:19,自引:1,他引:18  
季兰  杨仁崔 《植物学通报》2002,19(1):109-115
赤霉素(GA),生长素(IAA),脱落酸(ABA)和乙烯影响水稻茎(或节间)的伸长,其中赤霉素与水稻茎伸长生长的关系最密切。GA1是植物体内刺激茎伸长的至关重要的赤霉素,GA3已作为最常用的外源激素诱导水稻的节间伸长。水稻茎秆的伸受激素浓度和敏感性的双重控制,激素浓度或敏感性任一方的改变都有可能导致株高的变异。赤霉素如此显著地促进茎的伸长可能与增加细胞分裂和促使细胞壁松弛有关。而生长素主要促进细胞伸长。植物激素促进水稻茎长的分子机理的研究已有较大的进展,预期这方面的研究和应用在未来几年内将有新的突破。  相似文献   

16.
Polyamines and Anaerobic Elongation of Rice Coleoptile   总被引:2,自引:0,他引:2  
The role of polyamines in the anaerobic elongation of rice (Oryzasativa L.) coleoptiles was studied. The reduced growth of ricecoleoptiles under anoxic conditions was accompanied by a massiveaccumulation of free putrescine. Putrescine was synthesizedfrom arginine in a reaction catalyzed by arginine decarboxylase(ADC). The anoxic titer of putrescine was closely correlatedwith elongation of coleoptiles. In experiments in which putrescineand inhibitors [-difluoromethylarginine (DFMA) and -difluoromethylornithine(DFMO)] of the synthesis of polyamines were exogenously supplied,we demonstrated an absolute requirement for putrescine, synthesizedby ADC, for anaerobic elongation of coleoptiles. The presenceof exogenous putrescine (alone or in combination with DFMA)increased the rate of anaerobic elongation of coleoptile by30–40%. (Received December 1, 1988; Accepted June 19, 1989)  相似文献   

17.
Rice coleoptiles grow under anoxia. When the ultrastructure of anoxic coleoptile cells was examined, it was seen that most organelles maintain their integrity, with the exception of peroxisomes (unspecialized type). The lack of O2 greatly reduced the number of these organelles and altered the ultrastructure of the remaining ones. To examine the effect of O2 on peroxisome development in more detail, coleoptiles grown in air were transferred to N2 and anoxic coleoptiles were transferred to oxygen. Marker enzyme activity was measured in entire coleoptiles as well as in the isolated organelles. As expected, anoxia greatly depressed enzyme activity when imposed from the beginning of the germination process, while it had a lesser effect when imposed for only two days on aerobic seedlings. When coleoptiles were grown constantly under N2, the density of the organelles was 1.216 g/cm3, while the corresponding aerobic organelles showed a buoyant density of 1.241 g/cm3. When transferred to air the anoxic peroxisomes reached the intermediate density of 1.227 g/cm3. The results confirm the particular sensitivity of rice peroxisomes to O2 availability.  相似文献   

18.
Abstract: Gravity-induced events such as amyloplast sedimentation and lateral auxin transport were probed with cytoskeletal drugs in coleoptiles of rice ( Oryza sativa L.). Amyloplast sedimentation was retarded by taxol. Lateral transport of auxin (3H-indoleacetic acid) was strongly inhibited by EPC (ethyl N-phenylcarbamate), but only partially inhibited by taxol. 1 mM EPC reduced gravitropism while phototropism was not affected. The findings suggest that microtubules may transduce pressure or proximity of amyloplasts to the auxin exporter in the plasmalemma.  相似文献   

19.
Soybean [Glycine max (L.) Merr.] cultivars Dare and Hood were exposed to ozone (980 μg/m3) for 2 h to determine if differences in cultivar sensitivity were associated with differential activation of selected enzymes. The first trifoliate leaves of the cultivars were in similar stages of development (14 days from sowing) when exposed. The ozone treatment increased the activities of glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, polyphenol oxidase and peroxidase above the control in both cultivars within 30 h after exposure. However, the activity of all these enzymes increased several hours sooner in Dare (sensitive) than in Hood (tolerant). Our data suggest that the differential sensitivity of these two cultivars to ozone could be based on the differential ozone induced activation of the enzymes involved in the lesion formation process.  相似文献   

20.
IAA对小麦胚芽鞘质膜蛋白磷酸化的影响   总被引:1,自引:0,他引:1  
磷酸化/ 脱磷酸化机制是众多信号转导过程中的重要环节,很多信号物质被细胞受体识别后引发蛋白激酶和蛋白磷酸酶活性变化,通过磷酸化/ 脱磷酸化进一步调节多种酶活性而产生各种生理效应。在对生长素IAA 的信号转导的研究中,发现IAA 处理的小麦胚芽鞘质膜蛋白中蛋白激酶的活性和蛋白磷酸化程度都发生改变,并找到两种受到调节的蛋白激酶。钙离子通道抑制剂LaCl3 阻断了IAA 的这种作用,表明Ca2+参与了IAA的信号转导过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号