首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
In genetic analysis of diseases in which the underlying model is unknown, "model free" methods-such as affected sib pair (ASP) tests-are often preferred over LOD-score methods, although LOD-score methods under the correct or even approximately correct model are more powerful than ASP tests. However, there might be circumstances in which nonparametric methods will outperform LOD-score methods. Recently, Dizier et al. reported that, in some complex two-locus (2L) models, LOD-score methods with segregation analysis-derived parameters had less power to detect linkage than ASP tests. We investigated whether these particular models, in fact, represent a situation that ASP tests are more powerful than LOD scores. We simulated data according to the parameters specified by Dizier et al. and analyzed the data by using a (a) single locus (SL) LOD-score analysis performed twice, under a simple dominant and a recessive mode of inheritance (MOI), (b) ASP methods, and (c) nonparametric linkage (NPL) analysis. We show that SL analysis performed twice and corrected for the type I-error increase due to multiple testing yields almost as much linkage information as does an analysis under the correct 2L model and is more powerful than either the ASP method or the NPL method. We demonstrate that, even for complex genetic models, the most important condition for linkage analysis is that the assumed MOI at the disease locus being tested is approximately correct, not that the inheritance of the disease per se is correctly specified. In the analysis by Dizier et al., segregation analysis led to estimates of dominance parameters that were grossly misspecified for the locus tested in those models in which ASP tests appeared to be more powerful than LOD-score analyses.  相似文献   

2.
When the mode of inheritance of a disease is unknown, the LOD-score method of linkage analysis must take into account uncertainties in model parameters. We have previously proposed a parametric linkage test called "MFLOD," which does not require specification of disease model parameters. In the present study, we introduce two new model-free parametric linkage tests, known as "MLOD" and "MALOD." These tests are defined, respectively, as the LOD score and the admixture LOD score, maximized (subject to the same constraints as MFLOD) over disease-model parameters. We compared the power of these three parametric linkage tests and that of two nonparametric linkage tests, NPLall and NPLpairs, which are implemented in GENEHUNTER. With the use of small pedigrees and a fully informative marker, we found the powers of MLOD, NPLall, and NPLpairs to be almost equivalent to each other and not far below that of a LOD-score analysis performed under the assumption the correct genetic parameters. Thus, linkage analysis is not much hindered by uncertain mode of inheritance. The results also suggest that both parametric and nonparametric methods are suitable for linkage analysis of complex disorders in small pedigrees. However, whether these results apply to large pedigrees remains to be answered.  相似文献   

3.
In complex disease studies, it is crucial to perform multipoint linkage analysis with many markers and to use robust nonparametric methods that take account of all pedigree information. Currently available methods fall short in both regards. In this paper, we describe how to extract complete multipoint inheritance information from general pedigrees of moderate size. This information is captured in the multipoint inheritance distribution, which provides a framework for a unified approach to both parametric and nonparametric methods of linkage analysis. Specifically, the approach includes the following: (1) Rapid exact computation of multipoint LOD scores involving dozens of highly polymorphic markers, even in the presence of loops and missing data. (2) Non-parametric linkage (NPL) analysis, a powerful new approach to pedigree analysis. We show that NPL is robust to uncertainty about mode of inheritance, is much more powerful than commonly used nonparametric methods, and loses little power relative to parametric linkage analysis. NPL thus appears to be the method of choice for pedigree studies of complex traits. (3) Information-content mapping, which measures the fraction of the total inheritance information extracted by the available marker data and points out the regions in which typing additional markers is most useful. (4) Maximum-likelihood reconstruction of many-marker haplotypes, even in pedigrees with missing data. We have implemented NPL analysis, LOD-score computation, information-content mapping, and haplotype reconstruction in a new computer package, GENEHUNTER. The package allows efficient multipoint analysis of pedigree data to be performed rapidly in a single user-friendly environment.  相似文献   

4.
复杂疾病基因定位策略与肿瘤易感基因鉴定   总被引:3,自引:1,他引:2       下载免费PDF全文
对于不存在某单一基因位点经典的孟德尔显性或隐性遗传模式的疾病,称为复杂疾病,肿瘤是最常见的类型之一 . 目前,以连锁和相关分析为基础的功能克隆、功能候选克隆、定位克隆、定位候选克隆、系统生物学等复杂疾病易感基因定位策略逐渐发展起来 . 其中,系统生物学策略由于整合了从 DNA 到蛋白质的各个层面的信息,对复杂疾病基因调控网络做出了良好诠释,使其成为最有潜力的方法之一 . 目前,虽然已有近 100 种肿瘤 / 遗传性癌综合症的易感基因被鉴定出来,但未来的复杂疾病易感基因定位工作仍充满了挑战 .  相似文献   

5.
Usually, when complex traits are at issue, not only are the loci of the responsible genes a priori unknown; the same also holds for the mode of inheritance of the trait, and sometimes even for the phenotype definition. The term mode of inheritance relates to both the genetic mechanism, i.e., the number of loci implicated in the etiology of the disease, and the genotype-phenotype relation, which describes the influence of these loci on the trait. Having an idea of the genetic model can crucially facilitate the mapping process. This holds especially in the context of linkage analysis, where an appropriate parametric model or a suitable nonparametric allele sharing statistic may accordingly be selected. Here, we review the difficulties with parametric and nonparametric linkage analysis when applied to multifactorial diseases. We address the question why it is necessary to adequately model a genetically complex trait in a linkage study, and elucidate the steps to do so. Furthermore, we discuss the value of including unaffected individuals into the analysis, as well as of looking at larger pedigrees, both with parametric and nonparametric methods. Our considerations and suggestions aim at guiding researchers to genotyping individuals at a trait locus as accurately as possible.  相似文献   

6.
ABSTRACT: BACKGROUND: In the last years GWA studies have successfully identified common SNPs associated with complex diseases. However, most of the variants found this way account for only a small portion of the trait variance. This fact leads researchers to focus on rare-variant mapping with large scale sequencing, which can be facilitated by using linkage information. The question arises why linkage analysis often fails to identify genes when analyzing complex diseases. Using simulations we have investigated the power of parametric and nonparametric linkage statistics (KC-LOD, NPL, LOD and MOD scores), to detect the effect of genes responsible for complex diseases using different pedigree structures. RESULTS: As expected, a small number of pedigrees with less than three affected individuals has low power to map disease genes with modest effect. Interestingly, the power decreases when unaffected individuals are included in the analysis, irrespective of the true mode of inheritance. Furthermore, we found that the best performing statistic depends not only on the type of pedigrees but also on the true mode of inheritance. CONCLUSIONS: When applied in a sensible way linkage is an appropriate and robust technique to map genes for complex disease. Unlike association analysis, linkage analysis is not hampered by allelic heterogeneity. So, why does linkage analysis often fail with complex diseases? Evidently, when using an insufficient number of small pedigrees, one might miss a true genetic linkage when actually a real effect exists. Furthermore, we show that the test statistic has an important effect on the power to detect linkage as well. Therefore, a linkage analysis might fail if an inadequate test statistic is employed. We provide recommendations regarding the most favorable test statistics, in terms of power, for a given mode of inheritance and type of pedigrees under study, in order to reduce the probability to miss a true linkage.  相似文献   

7.
The scientific process of localization and subsequent identification of genes influencing risk of common diseases is still in its infancy. Initial localization of disease-related loci has traditionally been performed using family-based linkage methods to scan the genome. Early pronouncements of the failure of this approach for common diseases were premature and based on comparing suboptimal linkage designs with overly optimistic and empirically unproven association-based designs. On the contrary, substantial recent progress in the positional cloning of genes influencing such complex phenotypes suggests that modern approaches based around a family-based linkage paradigm will be successful. In particular, the rapidly growing emphasis on the analysis of the genetic basis of quantitative correlates of disease risk represents a novel and promising approach in which initial localization is performed using linkage and subsequent identification utilizes association approaches in positional candidate genes.  相似文献   

8.
The power to detect linkage by the LOD-score method is investigated here for diseases that depend on the effects of two genes. The classical strategy is, first, to detect a major-gene (MG) effect by segregation analysis and, second, to seek for linkage with genetic markers by the LOD-score method using the MG parameters. We already showed that segregation analysis can lead to evidence for a MG effect for many two-locus models, with the estimates of the MG parameters being very different from those of the two genes involved in the disease. We show here that use of these MG parameter estimates in the LOD-score analysis may lead to a failure to detect linkage for some two-locus models. For these models, use of the sib-pair method gives a non-negligible increase of power to detect linkage. The linkage-homogeneity test among subsamples differing for the familial disease distribution provides evidence of parameter misspecification, when the MG parameters are used. Moreover, for most of the models, use of the MG parameters in LOD-score analysis leads to a large bias in estimation of the recombination fraction and sometimes also to a rejection of linkage for the true recombination fraction. A final important point is that a strong evidence of an MG effect, obtained by segregation analysis, does not necessarily imply that linkage will be detected for at least one of the two genes, even with the true parameters and with a close informative marker.  相似文献   

9.
The extraordinary success of linkage analysis in diseases with Mendelian inheritance has not extended readily to the genetics of common complex diseases. VAPSE-based analysis is a type of candidate gene approach that represents an alternative strategy by which genetic mechanisms can be defined despite the presence of substantial genetic heterogeneity. Recent advances in mutation screening and statistical methodology have enhanced substantially the efficiency and power of this approach. The "bread and butter" of VAPSE-based analysis is genotype-to-phenotype searches in large populations with computerized medical records.  相似文献   

10.
Hereditary spastic paraplegia (HSP) is a degenerative disorder of the motor system, defined by progressive weakness and spasticity of the lower limbs. HSP may be inherited as an autosomal dominant (AD), autosomal recessive, or an X-linked trait. AD HSP is genetically heterogeneous, and three loci have been identified so far: SPG3 maps to chromosome 14q, SPG4 to 2p, and SPG4a to 15q. We have undertaken linkage analysis with 21 uncomplicated AD families to the three AD HSP loci. We report significant linkage for three of our families to the SPG4 locus and exclude several families by multipoint linkage. We used linkage information from several different research teams to evaluate the statistical probability of linkage to the SPG4 locus for uncomplicated AD HSP families and established the critical LOD-score value necessary for confirmation of linkage to the SPG4 locus from Bayesian statistics. In addition, we calculated the empirical P-values for the LOD scores obtained with all families with computer simulation methods. Power to detect significant linkage, as well as type I error probabilities, were evaluated. This combined analytical approach permitted conclusive linkage analyses on small to medium-size families, under the restrictions of genetic heterogeneity.  相似文献   

11.
Several methods have been proposed for linkage analysis of complex traits with unknown mode of inheritance. These methods include the LOD score maximized over disease models (MMLS) and the "nonparametric" linkage (NPL) statistic. In previous work, we evaluated the increase of type I error when maximizing over two or more genetic models, and we compared the power of MMLS to detect linkage, in a number of complex modes of inheritance, with analysis assuming the true model. In the present study, we compare MMLS and NPL directly. We simulated 100 data sets with 20 families each, using 26 generating models: (1) 4 intermediate models (penetrance of heterozygote between that of the two homozygotes); (2) 6 two-locus additive models; and (3) 16 two-locus heterogeneity models (admixture alpha = 1.0,.7,.5, and.3; alpha = 1.0 replicates simple Mendelian models). For LOD scores, we assumed dominant and recessive inheritance with 50% penetrance. We took the higher of the two maximum LOD scores and subtracted 0.3 to correct for multiple tests (MMLS-C). We compared expected maximum LOD scores and power, using MMLS-C and NPL as well as the true model. Since NPL uses only the affected family members, we also performed an affecteds-only analysis using MMLS-C. The MMLS-C was both uniformly more powerful than NPL for most cases we examined, except when linkage information was low, and close to the results for the true model under locus heterogeneity. We still found better power for the MMLS-C compared with NPL in affecteds-only analysis. The results show that use of two simple modes of inheritance at a fixed penetrance can have more power than NPL when the trait mode of inheritance is complex and when there is heterogeneity in the data set.  相似文献   

12.
血脂异常(Dyslipidemia)是指血浆中胆固醇和(或)甘油三酯水平升高, 可导致严重的心血管疾病, 常以冠心病和脑中风为首发表现, 该类疾病严重危害着人们的健康。一些血脂异常疾病具有遗传性, 主要包括孟德尔遗传和多基因遗传。传统检测血脂异常相关基因的方法主要有DNA测序和连锁分析, 适合于孟德尔遗传性血脂异常疾病。最近几年兴起的新一代测序技术(Next-generation sequencing)不仅适用于孟德尔遗传性血脂异常疾病的研究, 同样适用于复杂性血脂异常疾病。2006年至今, 运用全基因组关联分析(Genome wide association study, GWAS)筛出许多与血脂异常疾病相关的基因, 这些基因和早期孟德尔遗传家系确定的基因多数相同。GWAS频谱分析发现, 复杂性疾病相关的基因变异频率存在差异, 并且几乎所有筛查出的与血脂异常疾病相关的单核苷酸多态性(Single nucleotide polymorphisms, SNPs)变异均位于非编码区, 使得人们逐渐对非编码区基因变异展开了研究。血脂异常致病基因的发现和基因变异致病机制的阐明, 为血脂异常疾病提供新的治疗靶点, 并为新一代药物筛选提供新思路。文章对血脂异常遗传性疾病的研究现状进行了综述。  相似文献   

13.
Improved genotyping technology has made it feasible to use a genetic approach to map genes involved in the etiology of common human diseases. We discuss here recent developments in several different statistical approaches to linkage analysis of these traits, including affected-sib-pair methods, the affected-pedigree-member method, regressive models and linkage-disequilibrium-based approaches. We discuss advantages and disadvantages of the various approaches, as well as factors influencing study design and the ability to detect loci. Statistical methodology in this area is advancing rapidly and will help enable the mapping and cloning of loci involved in susceptibility to common multifactorial diseases.  相似文献   

14.
Computer simulation methods are under-used tools in genetic analysis because simulation approaches have been portrayed as inferior to analytic methods. Even when simulation is used, its advantages are not fully exploited. Here, I present SHIMSHON, our package of genetic simulation programs that have been developed, tested, used for research, and used to generated data for Genetic Analysis Workshops (GAW). These simulation programs, now web-accessible, can be used by anyone to answer questions about designing and analyzing genetic disease studies for locus identification. This work has three foci: (1) the historical context of SHIMSHON's development, suggesting why simulation has not been more widely used so far. (2) Advantages of simulation: computer simulation helps us to understand how genetic analysis methods work. It has advantages for understanding disease inheritance and methods for gene searches. Furthermore, simulation methods can be used to answer fundamental questions that either cannot be answered by analytical approaches or cannot even be defined until the problems are identified and studied, using simulation. (3) I argue that, because simulation was not accepted, there was a failure to grasp the meaning of some simulation-based studies of linkage. This may have contributed to perceived weaknesses in linkage analysis; weaknesses that did not, in fact, exist.  相似文献   

15.
It is usually difficult to localize genes that cause diseases with late ages at onset. These diseases frequently exhibit complex modes of inheritance, and only recent generations are available to be genotyped and phenotyped. In this situation, multipoint analysis using traditional exact linkage analysis methods, with many markers and full pedigree information, is a computationally intractable problem. Fortunately, Monte Carlo Markov chain sampling provides a tool to address this issue. By treating age at onset as a right-censored quantitative trait, we expand the methods used by Heath (1997) and illustrate them using an Alzheimer disease (AD) data set. This approach estimates the number, sizes, allele frequencies, and positions of quantitative trait loci (QTLs). In this simultaneous multipoint linkage and segregation analysis method, the QTLs are assumed to be diallelic and to interact additively. In the AD data set, we were able to localize correctly, quickly, and accurately two known genes, despite the existence of substantial genetic heterogeneity, thus demonstrating the great promise of these methods for the dissection of late-onset oligogenic diseases.  相似文献   

16.
Common diseases are often familial, but they do not show in most families, a simple pattern of inheritance. In a few families these diseases may be caused by a mutation in a single gene. In most families these diseases are multifactorial, they result from a complex interaction between a genetic component which is often polygenic and many environmental factors. Two major, model free, methods are used to locate and identify susceptibility genes that predispose to multifactorial diseases. The first is a non parametric linkage analysis that relies on affected sib pairs, or an affected pedigree member, the second method is association studies which looks for increase frequency of particular alleles or genotypes in affected compared with unaffected individuals in the population. Most of the results have not been replicated, identifying susceptibility genes is proving much more difficult than most geneticists imagined 20 years ago. The main reason for this irreproducibility is genetic heterogeneity.  相似文献   

17.
Sib-pair analysis is an increasingly important tool for genetic dissection of complex traits. Current methods for sib-pair analysis are primarily based on studying individual genetic markers one at a time and thus fail to use the full inheritance information provided by multipoint linkage analysis. In this paper, we describe how to extract the complete multipoint inheritance information for each sib pair. We then describe methods that use this information to map loci affecting traits, thereby providing a unified approach to both qualitative and quantitative traits. Specifically, complete multipoint approaches are presented for (1) exclusion mapping of qualitative traits; (2) maximum-likelihood mapping of qualitative traits; (3) information-content mapping, showing the extent to which all inheritance information has been extracted at each location in the genome; and (4) quantitative-trait mapping, by two parametric methods and one nonparametric method. In addition, we explore the effects of marker density, marker polymorphism, and availability of parents on the information content of a study. We have implemented the analysis methods in a new computer package, MAPMAKER/SIBS. With this computer package, complete multipoint analysis with dozens of markers in hundreds of sib pairs can be carried out in minutes.  相似文献   

18.
Positional cloning studies to identify disease genes are being carried out for many human genetic diseases. Such studies often include a genome-scan linkage analysis to identify the rough chromosomal location of a disease gene, fine structure genetic mapping to define and narrow the chromosomal interval in which the disease gene may be located, and physical mapping and gene identification in the genetically defined interval to clone the disease gene. During the planning of a positional cloning study, it is important to know that, if linkage is found, the genetic interval identified is likely to be sufficiently narrow to be dissected efficiently by methods of physical mapping and gene identification. Thus, we wish to know the limits of resolution of a genetic linkage study. In this paper, I determine for Mendelian diseases the distributions and moments of three measures of linkage resolution: (1) in a set of N chromosomes, the distance between the nearest crossovers that flank a disease locus, (2) the distance between the nearest genetic markers that flank the pair of flanking crossovers after a genome scan, and (3) the distance between the nearest flanking markers after additional randomly placed markers are generated and typed in an identified interval. These results provide explicit sample-size guidelines for future positional cloning studies of Mendelian diseases and make possible a more objective evaluation of whether a proposed positional cloning study is likely to be successful. I also briefly discuss the more difficult problem of linkage resolution for complex genetic diseases.  相似文献   

19.
The autoimmune thyroid diseases (AITDs) include two related disorders, Graves disease (GD) and Hashimoto thyroiditis, in which perturbations of immune regulation result in an immune attack on the thyroid gland. The AITDs are multifactorial and develop in genetically susceptible individuals. However, the genes responsible for this susceptibility remain unknown. Recently, we initiated a whole-genome linkage study of patients with AITD, in order to identify their susceptibility genes. We studied a data set of 53 multiplex, multigenerational AITD families (323 individuals), using highly polymorphic and densely spaced microsatellite markers (intermarker distance <10 cM). Linkage analysis was performed by use of two-point and multipoint parametric methods (classic LOD-score analysis). While studying chromosome 20, we found a locus on chromosome 20q11.2 that was strongly linked to GD. A maximum two-point LOD score of 3.2 was obtained at marker D20S195, assuming a recessive mode of inheritance and a penetrance of.3. The maximum nonparametric LOD score was 2.4 (P=.00043); this score also was obtained at marker D20S195. Multipoint linkage analysis yielded a maximum LOD score of 3.5 for a 6-cM interval between markers D20S195 and D20S107. There was no evidence for heterogeneity in our sample. In our view, these results indicate strong evidence for linkage and suggest the presence of a major GD-susceptibility gene on chromosome 20q11.2.  相似文献   

20.
Tritchler D  Liu Y  Fallah S 《Biometrics》2003,59(2):382-392
This article presents a score test for genetic linkage in nuclear families which applies to any trait having a distribution belonging to the exponential family, which includes binary and normal distributions, and distributions which are skewed or have nonnormal kurtosis. The specific distribution need not be specified and the method applies to sibships of arbitrary size. Tests of complex genetic effects are given, including unspecified mode of inheritance or additive, dominant, overdominant, and recessive modes of inheritance, covariates, multiple-locus models, including gene-gene interactions, and gene-environment interactions. The relation of our method to the Haseman-Elston methods is studied theoretically and by simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号