首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bin Wei  Ge Gao  Jiulin Du  Gang Pei 《The EMBO journal》2014,33(12):1383-1396
Primitive hematopoiesis occurs in the yolk sac blood islands during vertebrate embryogenesis, where abundant phosphatidylcholines (PC) are available as important nutrients for the developing embryo. However, whether these phospholipids also generate developmental cues to promote hematopoiesis is largely unknown. Here, we show that lysophosphatidic acid (LPA), a signaling molecule derived from PC, regulated hemangioblast formation and primitive hematopoiesis. Pharmacological and genetic blockage of LPA receptor 1 (LPAR1) or autotoxin (ATX), a secretory lysophospholipase that catalyzes LPA production, inhibited hematopoietic differentiation of mouse embryonic stem cells and impaired the formation of hemangioblasts. Mechanistic experiments revealed that the regulatory effect of ATX‐LPA signaling was mediated by PI3K/Akt‐Smad pathway. Furthermore, during in vivo embryogenesis in zebrafish, LPA functioned as a developmental cue for hemangioblast formation and primitive hematopoiesis. Taken together, we identified LPA as an important nutrient‐derived developmental cue for primitive hematopoiesis as well as a novel mechanism of hemangioblast regulation.  相似文献   

2.
Hematopoietic stem cells (HSC) comprise a small percentage of total hematopoietic cells. Their ability to self-renewal is key to the continuous replenishment of the hematopoietic system with newly formed functional blood cell types while maintaining their multipotential capacity. Understanding the extrinsic signals that are essential to HSC maintenance will provide insights into the regulation of hematopoiesis at its most primitive stage, and with the knowledge applied, will potentially lead to improved clinical transplantation outcomes. In this review, we will summarize the current understanding of the role of the thrombopoietin/MPL signaling pathway in HSC maintenance during adult and fetal hematopoiesis. We will also speculate on the downstream key players in the pathway based on published data, and summarize the role of this pathway in leukemia.  相似文献   

3.
TGFβ、Wnt、FGF和Hedgehog(Hh)等信号通路是参与胚胎发育的关键信号通路.从果蝇到人类,Hh信号通路广泛存在并高度保守,在多种器官的发育过程中发挥重要作用. 脂肪细胞发育的过程包括多潜能干细胞向前脂肪细胞定向和脂肪细胞终末分化两个阶段.近年来,Hh信号通路在脂肪细胞发育过程中的作用逐渐成为研究热点.越来越多的研究表明,Hh信号通路抑制脂肪细胞发育.本文将对Hh信号通路抑制脂肪细胞发育的作用以及其发挥作用的阶段进行综述,并分析将该信号通路作为靶点治疗肥胖症及相关疾病的可行性.  相似文献   

4.
During embryonic development, the hematopoietic system is the first to generate terminally differentiated, functional cell types. The urgent necessity for the early formation of blood and blood vessels during embryogenesis means that the induction, expansion, and maturation of these systems must be rapidly and precisely controlled. Bone morphogenic proteins (BMPs) have been implicated in hematopoietic development in the vertebrate embryo and stimulate the proliferation and/or differentiation of human cord blood hematopoietic stem cells (HSC) and embryonic stem cells in vitro. Here we review the mechanisms of action and potential roles of these soluble signaling molecules in vertebrate hematopoiesis.  相似文献   

5.
The hedgehog (Hh) signaling pathway is a key regulator during embryonic development, while in adults, it has limited functions such as stem cell maintenance and tissue repair. The aberrant activity of the Hh signaling in adults has been linked to numerous human cancers. Inhibition of Hh signaling therefore represents a promising approach toward novel anticancer therapies. The Smoothened (Smo) receptor mediates Hh signaling. Here we report a new series of Smo antagonists which were obtained by a scaffold hopping strategy. Compounds from this new scaffold demonstrated decent inhibition of Hh pathway signaling. The new scaffold can serve as a starting point for further optimization.  相似文献   

6.
Hematopoietic stem cells (HSC) are found in several independent sites embryonically. Loss-of-function studies indicated that Notch1, but not Notch2 signaling was required for HSC emergence from the aortic-gonado-mesonephros (AGM) region. We previously showed that constitutive Notch1 activation impaired primitive erythroid differentiation, but its effects on HSC emergence from the AGM region were not studied. To further define specific roles of Notch receptors, we characterized HSC in mouse embryos expressing either Notch1 intracellular domain (ICD) or Notch4ICD in VE-cadherin or SM22α expressing populations. Although embryonic Notch1 activation in VE-cadherin populations led to lethality after E13.5, earlier defects in the fetal liver were observed. Embryos were analyzed at E12.5 to assess hematopoiesis and the phenotype of developing cells in the AGM region. We found that activation of Notch1 in the endothelial compartment in VE-cadherin expressing cells resulted in the absence of intra-aortic clusters and defects in fetal liver hematopoiesis. In contrast, although Notch4 expression is regulated during fetal hematopoiesis, activation of Notch4 in VE-cadherin expressing populations did not affect HSC phenotype, although later vascular remodeling was impaired. Likewise, activation of Notch1 in SM22α positive populations had no significant effect on hematopoiesis. Our results indicate a cell type-dependent activity and distinct features of Notch1 versus Notch4 signaling and their impact on HSC generation.  相似文献   

7.
Kyba M  Perlingeiro RC  Daley GQ 《Cell》2002,109(1):29-37
The extent to which primitive embryonic blood progenitors contribute to definitive lymphoid-myeloid hematopoiesis in the adult remains uncertain. In an effort to characterize factors that distinguish the definitive adult hematopoietic stem cell (HSC) and primitive progenitors derived from yolk sac or embryonic stem (ES) cells, we examined the effect of ectopic expression of HoxB4, a homeotic selector gene implicated in self-renewal of definitive HSCs. Expression of HoxB4 in primitive progenitors combined with culture on hematopoietic stroma induces a switch to the definitive HSC phenotype. These progenitors engraft lethally irradiated adults and contribute to long-term, multilineage hematopoiesis in primary and secondary recipients. Our results suggest that primitive HSCs are poised to become definitive HSCs and that this transition can be promoted by HoxB4 expression. This strategy for blood engraftment enables modeling of hematopoietic transplantation from ES cells.  相似文献   

8.
The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components.  相似文献   

9.
10.
Homozygosity for a null mutation in the scl gene causes mid-gestational embryonic lethality in the mouse due to failure of development of primitive hematopoiesis. Whilst this observation established the role of the scl gene product in primitive hematopoiesis, the death of the scl null embryos precluded analysis of the role of scl in later hematopoietic development. To address this question, we created embryonic stem cell lines with a homozygous null mutation of the scl gene (scl-/-) and used these lines to derive chimeric mice. Analysis of the chimeric mice demonstrates that the scl-/- embryonic stem cells make a substantial contribution to all non-hematopoietic tissues but do not contribute to any hematopoietic lineage. These observations reveal a crucial role for the scl gene product in definitive hematopoiesis. In addition, in vitro differentiation assays with scl-/- embryonic stem cells showed that the scl gene product was also required for formation of hematopoietic cells in this system.  相似文献   

11.
During embryonic development, the establishment of the primitive erythroid lineage in the yolk sac is a temporally and spatially restricted program that defines the onset of hematopoiesis. In this report, we have used the embryonic stem cell differentiation system to investigate the regulation of primitive erythroid development at the level of the hemangioblast. We show that the combination of Wnt signaling with inhibition of the Notch pathway is required for the development of this lineage. Inhibition of Notch signaling at this stage appears to be mediated by the transient expression of Numb in the hemangioblast-derived blast cell colonies. Activation of the Notch pathway was found to inhibit primitive erythropoiesis efficiently through the upregulation of inhibitors of the Wnt pathway. Together, these findings demonstrate that specification of the primitive erythroid lineage is controlled, in part, by the coordinated interaction of the Wnt and Notch pathways, and position Numb as a key mediator of this process.  相似文献   

12.
13.
14.
15.
Chronic Myeloid Leukemia (CML) is a hematopoietic stem cell malignancy that is driven by the oncogenic BCR-ABL fusion protein, and for which treatment with ABL tyrosine kinase inhibitors (TKI) has yielded great success. While this is the case, BCR-ABL leukemic stem cells can persist despite TKI therapy, and efforts have intensified towards determining the molecular pathways that are critical for the maintenance of such cells. Recent studies indicate that aberrant Hedgehog (Hh) signaling plays a crucial role in the survival of the leukemic stem cell population. The Hh pathway displays crucial roles during embryonic development, tissue regeneration and repair in adults. Several mechanisms that lead to the aberrant activation of the Hh pathway have been identified in various cancers. Here we review in detail the discovery that Hh signaling governs the maintenance of the critical leukemia initiating cells or leukemic stem cells (LSCs) in BCR-ABL-induced CML as well as discuss investigations on the role of Hh signaling in normal hematopoeisis. As inhibitors that directly target the positive Hh signal transducer Smoothened (SMO) have entered clinical trials, these findings offer a unique opportunity to potentially target the LSC population that is not eliminated with ABL tyrosine kinase inhibition therapy in CML.  相似文献   

16.
Recently, we have shown that small cell lung cancer (SCLC) is dependent on activation of Hedgehog signaling, an embryonic pathway implicated in development, morphogenesis and the regulation of stem cell fates. These findings form the framework for an emerging view of cancer as a process of aberrant organogenesis in which progenitor/ stem cells escape dependence on niche signaling through mutation in genes such as Ptch, or through persistent activation of progenitor cell pathways. Interestingly, the normally quiescent airway epithelial compartment uses the Hh pathway to repopulate itself when challenged by injury. How Hh signaling works to promote the malignant phenotype promises to be as important biologically as the promise of Hh pathway inhibitors are clinically.  相似文献   

17.
Primitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the early embryo and is initiated by the emergence of progenitors assayed as colony-forming cells (EryP-CFCs). EryP-CFCs are detected for only a narrow window during embryonic development, suggesting that both their initiation and termination are tightly controlled. Using the embryonic stem differentiation system to model primitive erythropoiesis, we found that miR-126 regulates the termination of EryP-CFC development. Analyses of miR-126 null embryos revealed that this?miR also regulates EryP-CFCs in?vivo. We identified vascular cell adhesion molecule-1 (Vcam-1) expressed by a mesenchymal cell population as?a relevant target of miR-126. Interaction of EryP-CFCs with Vcam-1 accelerated their maturation to ?h1-globin(+) and Ter119(+) cells through a Src family kinase. These findings uncover a cell nonautonomous regulatory pathway for primitive erythropoiesis that may provide insight into the mechanism(s) controlling the developmental switch from primitive to definitive hematopoiesis.  相似文献   

18.
Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk+ hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk+ hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk+ hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.  相似文献   

19.
Hedgehog coordination of postnatal osteoclast and osteoblast activities   总被引:1,自引:0,他引:1  
The Hedgehog (Hh) pathway is important for skeletal patterning and morphogenesis during embryonic development. Papers by Ohba et al. and Mak et al. in this edition of Developmental Cell suggest that Hh signaling may exert delicate control over the activities of osteoclasts and osteoblasts, the cell types primarily responsible for bone resorption and formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号