共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
V Kaever J Bruuns J Wunder B Damerau G Zimmer J Fauler K Wessel J Floege N Topley H Radeke 《Life sciences》1990,46(20):1465-1470
Due to its potent chemotactic properties leukotriene B4 is an important mediator of inflammatory reactions. Cultured human kidney mesangial cells converted exogenously added leukotriene B4 efficiently into three different more lipophilic metabolites, two of them probably representing dihydro-leukotriene B4 isomers. This represents an alternative metabolic pathway, in contrast to leukotriene B4 omega-oxidation found in human polymorphonuclear leukocytes. Both dihydro-leukotriene B4 isomers had nearly completely lost their ability to induce leukocyte chemotaxis as compared to leukotriene B4. 相似文献
4.
We have developed a method for measuring leukotriene B4 glucuronide, a marker of systemic leukotriene B4 biosynthesis, in human urine. This method involves the separation of two positional isomers of leukotriene B4 glucuronide by high-performance liquid chromatography, followed by hydrolysis with beta-glucuronidase and then leukotriene B4 quantification by enzyme immunoassay after purification by high-performance liquid chromatography. One of two positional isomers of leukotriene B4 glucuronide was predominantly present in urine. The concentration of the isomer increased in urine from aspirin-intolerant asthma patients after aspirin challenge. Urinary leukotriene E4 and leukotriene B4 glucuronide concentrations in 13 normal healthy adults were 94.6 pg/mg-creatinine (median) and 22.3 pg/mg-creatinine, respectively. Urinary LTE4 concentration increased during the first 3h after allergen inhalation in atopic patients. However, allergen-induced bronchoconstriction was not associated with an increased concentration of LTB4 glucuronide in urine. The method enabled us to precisely determine urinary leukotriene B4 glucuronide concentration. 相似文献
5.
Leukotriene B3, leukotriene B4 and leukotriene B5; binding to leukotriene B4 receptors on rat and human leukocyte membranes 总被引:1,自引:0,他引:1
S Charleson J F Evans R J Zamboni Y Leblanc B J Fitzsimmons C Leveillé P Dupuis A W Ford-Hutchinson 《Prostaglandins》1986,32(4):503-516
Specific high-affinity binding sites for [3H]-leukotriene B4 have been identified on membrane preparations from rat and human leukocytes. The rat and human leukocyte membrane preparations show linearity of binding with increasing protein concentration, saturable binding and rapid dissociation of binding by excess unlabelled leukotriene B4. Dissociation constants of 0.5 to 2.5 nM and maximum binding of 5000 fmoles/mg protein were obtained for [3H] leukotriene B4 binding to these preparations. Displacement of [3H]-leukotriene B4 by leukotriene B4 was compared with displacement by leukotriene B3 and leukotriene B5 which differ from leukotriene B4 only by the absence of a double bond at carbon 14 or the presence of an additional double bond at carbon 17, respectively. Leukotriene B3 was shown to be equipotent to leukotriene B4 in ability to displace [3H]-leukotriene B4 from both rat and human leukocyte membranes while leukotriene B5 was 20-50 fold less potent. The relative potencies for the displacement of [3H]-leukotriene B4 by leukotrienes B3, B4 and B5 on rat and human leukocyte membranes were shown to correlate well with their potencies for the induction of the aggregation of rat leukocytes and the chemokinesis of human leukocytes. 相似文献
6.
H E Claesson N Dahlberg G Gahrton 《Biochemical and biophysical research communications》1985,131(2):579-585
Cultivation of human mononuclear bone marrow cells for 10 days in the presence of leukotriene B4 (8 X 10(-8) - 3 X 10(-6)M) led to an increase in the formation of granulocyte-macrophage colonies. The increase varied between 19 and 122% when compared to control cells. 5S, 12S-Dihydroxy-6, 8, 10, 14-eicosatetraenoic acid (5S, 12S-DHETE), an isomer of leukotriene B4, did not stimulate colony formation. Preincubation of the cells with 5S, 12S-DHETE inhibited the stimulatory action of leukotriene B4 on the proliferation of bone marrow cells. The present study indicates that leukotriene B4 amplifies the stimulation caused by the colony stimulating factor(s) and may play a role in modulating granulocyte and macrophage poiesis by a positive feedback mechanism. 相似文献
7.
Comparative effect of leukotriene B4 and leukotriene B5 on calcium mobilization in human neutrophils
A Seya T Terano Y Tamura S Yoshida 《Prostaglandins, leukotrienes, and essential fatty acids》1988,34(1):47-50
Leukotriene B4 (LTB4) is reported to exert its biological activity in neutrophils through the increase in cytosolic free calcium that follows binding to its specific receptor. Leukotriene B5 has been shown to be far less active than LTB4. Therefore we compared the capacity of LTB4 and LTB5 to stimulate the rise in cytosolic free calcium using fura-2-loaded human neutrophils, to assess the relationship between the calcium mobilizing activity and biological potency of LTB4 and LTB5. At any concentration tested, LTB5 was less active than LTB4 in increasing cytosolic free calcium. ED50 for LTB4 and LTB5 were 5 X 10(-10) M and 5 X 10(-9) M, respectively. The difference in the binding affinities of LTB4 and LTB5 to the LTB4 receptor has been reported to explain the difference in their biological activities. In the present study we further demonstrated that the calcium mobilizing activity of LTB4 and LTB5 also correlates the different biological activity of the two compounds. 相似文献
8.
A H Lin P L Ruppel R R Gorman 《Biochemical and biophysical research communications》1985,128(2):878-883
Specific leukotriene B4 (LTB4) receptors in human neutrophils were solubilized by treatment of "receptor fraction" membranes with the zwitterionic detergent (3-[(3-cholamidopropyl)-dimethylammonio]1-propane sulfonate (CHAPS). The soluble receptors were assayed by polyethylene glycol (PEG) precipitation coupled with Millipore filtration. The solubilized receptors retained all of the characteristics of the receptor sites in intact neutrophils. The binding of LTB4 was rapid, reversible and stereospecific. Mathematical modeling analysis revealed biphasic binding of [3H] LTB4 indicating two classes of binding sites. The high affinity binding site had a dissociation constant of 1.93 nM and Bmax of 281 fmoles/mg protein; the low affinity binding site had a dissociation constant of 78.92 nM and Bmax of 2522 fmoles/mg protein. Competitive binding experiments with structural analogs of LTB4 demonstrate that the interaction between LTB4 and its binding site is stereospecific and correlates with the relative biological activity of the analogs. These data suggest that it may be possible to purify the LTB4 receptor from human neutrophil membranes. 相似文献
9.
The conversion of leukotriene C4 to isomers of leukotriene B4 by human eosinophil peroxidase 总被引:7,自引:0,他引:7
E J Goetzl 《Biochemical and biophysical research communications》1982,106(2):270-275
The smooth muscle contractile and vasoactive mediator leukotriene C4 (5(S)-hydroxy-6(R)-sulfido-glutathionyl-eicosatetraenoic acid; LTC4) is converted by phorbol ester-stimulated human eosinophils to two isomers of leukotriene B4, 5(S),12(R)-6,8,10 trans-14 cis-eicosatetraenoic acid (5(S),12(R)-“all-trans”-LTB4) and 5(S),12(S)-“all-trans”-LTB4, which are leukocyte chemotactic factors lacking the humoral functions of LTC4. Optimal conversion of LTC4 to the “all-trans” isomers of LTB4 by intact eosinophils and soluble eosinophil peroxidase requires both H2O2 and halide ions. Oxidative metabolism of leukotrienes may represent an important regulatory function of eosinophils in hypersensitivity reactions. 相似文献
10.
H J Showell I G Otterness A Marfat E J Corey 《Biochemical and biophysical research communications》1982,106(3):741-747
Leukotriene B4 (LTB4) is a potent mediator of pro-inflammatory responses including neutrophil degranulation. Leukotriene B4 dimethylamide has been synthesized and shown to inhibit neutrophil degranulation induced by LTB4. The inhibition required time to develop (~60 secs), and had a KD of circa 2 × 10?7M, and occurred at concentrations where LTB4 dimethylamide had negligible agonist activity. 相似文献
11.
Metabolism of leukotriene A4 by human erythrocytes. A novel cellular source of leukotriene B4 总被引:6,自引:0,他引:6
F Fitzpatrick W Liggett J McGee S Bunting D Morton B Samuelsson 《The Journal of biological chemistry》1984,259(18):11403-11407
Human erythrocytes transformed leukotriene A4 into leukotriene B4. Metabolism was proportional to the erythrocyte concentration, even at subphysiological levels (0.08-4 X 10(9) erythrocytes/ml). Comparative metabolic studies excluded the possibility that leukotriene B4 originated from trace amounts of polymorphonuclear leukocytes or platelets present in the purified erythrocyte suspensions. For example, suspensions of isolated platelets (100-500 X 10(6) cells/ml) failed to convert leukotriene A4 into leukotriene B4; and conversion by suspensions of isolated polymorphonuclear neutrophils was insufficient to account for the amounts of leukotriene B4 formed by erythrocytes. Leukotriene B4 formation was maximal within 2 min and substrate concentration dependent. Enzymatic activity originated from a 56 degrees C labile nondialyzable (Mr greater than 30,000) soluble component in the 100,000 X g supernatant obtained from lysed erythrocytes. In contrast to the contemporary view, our results indicate that human erythrocytes are not metabolically inert in terms of eicosanoid biosynthesis. The role of human erythrocytes during inflammatory or pulmonary disorders deserves re-examination in this context. 相似文献
12.
B Odlander P J Jakobsson A Rosén H E Claesson 《Biochemical and biophysical research communications》1988,153(1):203-208
Incubation of human tonsillar B lymphocytes and peripheral blood T lymphocytes with leukotriene A4 led to the formation of leukotriene B4. The purity of these cell suspensions was more than 99%, containing less than 0.5% monocytes. Incubation of purified B or T lymphocytes with the calcium ionophore A23187 did not lead to the formation of any detectable amounts of leukotrienes. Several established cell lines of B and T lymphocytic origin were also found to convert leukotriene A4 into leukotriene B4, showing that monoclonal lymphocytic cells possess leukotriene A4 hydrolase activity. 相似文献
13.
Human T-cell lines (HSB, MOLT-4 and CCRF-CEM) produced leukotriene B4 when incubated with leukotriene A4. The product was characterized by chromatographic properties, UV-spectroscopy and gas chromatography mass spectrometry. About 10 pmol of leukotriene B4 was obtained per 10(6) cells. When incubated with arachidonic acid plus the calcium ionophore A23187 however, no leukotriene B4 was found, indicating that the T-cell lines lack 5-lipoxygenase yet contain LTA4 hydrolase. 相似文献
14.
Urinary leukotriene E4 excretion in exercise-induced asthma. 总被引:8,自引:0,他引:8
Recent evidence suggests that the cysteinyl-leukotrienes (LTC4, LTD4, and LTE4) may be important in the pathogenesis of exercise-induced asthma. To evaluate the role of these mediators further, nine asthmatic subjects with exercise-induced bronchoconstriction were studied on two occasions. On visit 1, subjects performed 6 min of treadmill exercise; the mean maximal percent fall in FEV1 was 38.0 +/- 5.3%. On visit 2, maximal bronchoconstriction observed after exercise was matched with aerosolized methacholine. Urine was collected in two 90-min fractions (0-90 and 90-180 min) after challenges and analyzed by high-performance liquid chromatography-radioimmunoassay for LTE4. There were no significant differences in urinary LTE4 excretion between exercise and methacholine challenges for the periods 0-90 min (16.9 +/- 5.4 vs. 20.4 +/- 4.2 ng/mmol urinary creatinine), 90-180 min (24.9 +/- 8.2 vs. 20.1 +/- 5.5), or 0-180 min (21.5 +/- 6.5 vs. 18.8 +/- 4.1). Thus in contrast to allergen-induced bronchoconstriction, there is little evidence for enhanced cysteinyl-leukotriene generation in exercise-induced bronchoconstriction as assessed by urinary LTE4. If local release and subsequent participation of functionally active cysteinyl-leukotrienes in the pathways that ultimately lead to bronchoconstriction after exercise challenge do occur, these are of insufficient magnitude to perturb urinary LTE4 excretion. 相似文献
15.
H Sumimoto M Satoh K Takeshige E J Cragoe S Minakami 《Biochimica et biophysica acta》1988,970(1):31-38
Leukotriene B4 induced a biphasic change in the cytoplasmic pH of human neutrophils: an initial rapid acidification followed by an alkalinization. The acidification was slightly reduced by the removal of extracellular Ca2+, but the subsequent alkalinization was not. The leukotriene B4-induced alkalinization was dependent on extracellular Na+ and pH, and was inhibited by amiloride and its more potent analogue, 5-(N,N-hexamethylene)amiloride. These characteristics indicate that the cytoplasmic alkalinization is mediated by the Na+-H+ exchange. Oxidation products of leukotriene B4, 20-hydroxyleukotriene B4, 20-carboxyleukotriene B4, and (5S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) also stimulated the Na+-H+ exchange, but higher concentrations were required. Treatment of the cells with pertussis toxin inhibited both phases of the leukotriene B4-induced pHi change, while cholera toxin did not affect the pHi change. The alkalinization induced by leukotriene B4 was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, but was not inhibited by N-(2-guanidinoethyl)-5-isoquinolinesulfonamide which has a less inhibitory effect on protein kinase C. Acidification was not affected by the drugs. These findings suggest that a GTP-binding protein sensitive to pertussis toxin and protein kinase C are involved in the activation of the Na+-H+ exchange stimulated by leukotriene B4. 相似文献
16.
B K Lam L Gagnon K F Austen R J Soberman 《The Journal of biological chemistry》1990,265(23):13438-13441
Recently, we characterized the export of leukotriene (LT) C4 from human eosinophils as a carrier-mediated process (Lam, B. K., Owen, W. F., Jr., Austen, K. F., and Soberman, R. J. (1989) J. Biol. Chem. 264, 12885-12889). To determine whether a similar mechanism regulates the release of leukotriene B4 (LTB4), human polymorphonuclear leukocytes (PMN) were preloaded with LTB4 by incubation with 25 microM leukotriene A4 (LTA4) at 0 degrees C for 60 min. PMN converted LTA4 to LTB4 in a time-dependent manner as determined by resolution of products by reverse-phase high performance liquid chromatography and quantitation by integrated optical density. When PMN preloaded with LTB4 were resuspended in buffer at 37 degrees C for 0-90 s, there occurred a time-dependent release of LTB4 but little formation or release of 20-hydroxy-LTB4 and 20-carboxy-LTB4. When PMN were preloaded with increasing amounts of intracellular LTB4 by incubation with 3.1-50.0 microM LTA4 and were then resuspended in buffer at 37 degrees C for 20 s, there occurred a concentration-dependent and saturable release of LTB4 with a Km of 798 pmol/10(7) cells and a Vmax of 383 pmol/10(7) cells/20 s. The release of LTB4 was temperature-sensitive with a Q10 of 3.0 and an energy of activation of 19.9 kcal/mol. The rate of LTB4 release at 37 degrees C is about 50 times the rate of 20-carboxy-LTB4 release. PMN preloaded with LTB4 and resuspended at 0 degree C for 1-60 min in the presence of 30 microM LTA5 progressively converted LTA5 to LTB5. The rate of LTB4 release at 0 degree C was inhibited over the entire time period, peaking at about 50% at 30 min. These results indicate that the release of LTB4 from PMN is a carrier-mediated process that is distinct from its biosynthesis. 相似文献
17.
We have previously shown that porcine leukocytes convert leukotriene B4 (LTB4) to two major products, 10,11-dihydro-LTB4 and 10,11-dihydro-12-oxo-LTB4. Although we did not detect these products after incubation of LTB4 with human polymorphonuclear leukocytes, these cells converted 12-epi-6-trans-LTB4 to the corresponding 6,11-dihydro metabolite (i.e., there appeared to be a shift in the positions of the remaining double bonds). The objective of the present investigation was to determine whether 6-trans isomers of LTB4 are metabolized by porcine leukocytes by a pathway similar to LTB4, or whether they are metabolized by a pathway analogous to that in human leukocytes. We found that 6-trans-LTB4 and 12-epi-6-trans-LTB4 are metabolized more much extensively than LTB4 by porcine leukocytes. 6-trans-LTB4 appears to be converted by two different reductase pathways to two dihydro products differing in the positions of the two remaining double bonds between carbons 5 and 12. Dihydro-12-oxo and dihydro-5-oxo metabolites are also formed from this substrate. Porcine leukocytes also convert 6-trans-LTB4, presumably by a combination of the above two pathways, to tetrahydro, tetrahydro-12-oxo and tetrahydro-5-oxo metabolites, none of which possesses any conjugated double bonds. 12-epi-6-trans-LTB4 is also converted to tetrahydro metabolites by these cells. Experiments with deuterium-labeled 6-trans-LTB4 indicated that the deuterium in the 5-position was almost completely lost during the formation of tetrahydro-6-trans-LTB4, whereas about 80-85% of the deuterium in the 12-position was lost, suggesting a requirement for a 5-oxo intermediate. As with LTB4, 12-epi-8-cis-6-trans-LTB4, the product of the combined actions of 5-lipoxygenase and 12-lipoxygenase, was converted principally to dihydro and dihydro-12-oxo metabolites. Only a relatively small amount of the tetrahydro metabolite was detected. 相似文献
18.
Superoxide production of human polymorphonuclear leukocytes stimulated by leukotriene B4 总被引:2,自引:0,他引:2
Leukotriene B4 stimulated a transient production of superoxide anions (O2-) by human polymorphonuclear leukocytes which continued for only about 1 min. The production was dependent on Ca2+ in the suspending medium and no production was observed without the addition of calcium. The concentrations of leukotriene B4 and calcium for the half-maximal production were about 1 microM and 200 microM, respectively. 8-(N,N,-Diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist, did not inhibit the O2- production stimulated by leukotriene B4 in the presence of calcium, while N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin inhibitor, did. When leukotriene B4 was added to the cells treated with cytochalasin B, the production of O2- was biphasic: an initial rapid phase, followed by a slow one. The slow phase was also dependent on Ca2+ concentrations but it could be induced even without the addition of Ca2+ to the medium. The cells treated with both cytochalasin B and TMB-8 in Ca2+-free medium showed a negligible production of superoxide on addition of leukotriene B4, but the production appeared upon addition of CaCl2. These findings suggest that the superoxide production stimulated by leukotriene B4 is associated with the influx of Ca2+. 相似文献
19.
W S Powell 《Biochemical and biophysical research communications》1987,145(3):991-998
Rat polymorphonuclear leukocytes metabolize leukotriene B4 (LTB4) by at least two major pathways. LTB4 is converted by a reductase in these cells to a dihydro metabolite in which one of the three conjugated double bonds has been reduced to give a conjugated diene with a UV absorption maximum at 230 nm. DihydroLTB4 appears to be a key intermediate in the metabolism of LTB4 by rat polymorphonuclear leukocytes, since a number of other metabolites, exhibiting UV absorbance at 235 nm, but not at 280 nm, have been detected by high pressure liquid chromatography. In addition, these cells contain a 19-hydroxylase, which converts LTB4 to 19-hydroxyLTB4, which has a typical leukotriene UV spectrum, exhibiting absorption maxima at 261, 270, and 282 nm. 相似文献
20.
Enzymes involved in the biosynthesis of leukotriene B4 总被引:10,自引:0,他引:10