首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
We examined the axial repeats in electron micrographs of three types of negatively stained paracrystals (two tactoid- and one sheet-like type) of rabbit light meromyosin (LMM) and its complex with C-protein characterized previously by similar axial period of about 43.0 nm. Assuming for the axial repeat in type II tactoids the value of 42.93 +/- 0.05 nm as it was determined by X-ray diffraction technique (Yagi and Offer 1981), we found average axial repeats in type I tactoid and in sheet-like paracrystal of 42.93 +/- 0.75 nm and 43.50 +/- 0.62 nm respectively. Analyzing the micrographs where the two types paracrystals are located side-by-side we determined rather accurately the average ratio of axial repeat in sheet-like paracrystal to that in type I tactoid (1.013 +/- 0.002). Taking 42.93 nm as the axial repeat in type I tactoid, the axial repeat in sheet-like paracrystal was found to be 43.50 +/- 0.08 nm. C-protein binds to LMM with the period of the underlying LMM paracrystals and independently of the value of their axial repeats. Two different axial repeats (42.9 nm and 43.5 nm) revealed for LMM paracrystals in this study precisely coincide with the average repeat periods of myosin crossbridges along the thick filaments found for different physiological states of skeletal muscles (Lednev and Kornev 1987). Molecular basis for the appearance of two structural states in LMM paracrystals and in the shafts of thick filaments are discussed.  相似文献   

2.
Complex formation between delta protein and F-actin has been demonstrated by electrophoretic technique. The high turbidity of F-actin solutions has made it necessary to work at low concentrations of this protein (0.8 to 1.6 mg/ml). Delta protein concentrations were four to six times greater. At higher concentrations all F-actin was bound to delta protein, on both limbs. The combination ratio was about 1:1 by weight. We call this complex “delta-actin.” When the complex formed there was a slight fall in viscosity, indicating side-by-side union, but the turbidity greatly increased. The mobility of delta-actin was always less than that of free F-actin and sometimes also less than that of free delta protein. We earlier reported that delta protein is probably a polymer of tropomyosin. Its sedimentation constant (4.4 to 6.0 S) is higher than the of any other form of tropomyosin so far described. It may be the native molecule, its structure preserved by our relatively simple method of extraction and purification. The filaments of the I band may be composed of delta-actin. Since delta protein also forms a complex with myosin the filaments of the A band may be composed of delta-myosin. Delta protein may be a structural component which, in addition to other activities, may direct the building of both filament arrays and strengthen them.  相似文献   

3.
Structure of the three-chain unit of the bovine epidermal keratin filament   总被引:23,自引:0,他引:23  
The characteristic α-type X-ray diffraction pattern displayed by bovine epidermal keratin filaments can be ascribed to the presence of segments of triple-chain coiled coil α-helix in the repeating three-chain unit of the filaments.Limited proteolysis of filaments polymerized in vitro or a citrate-soluble protein derived from them with crystalline trypsin releases two types of α-helix-enriched particles which provide information on the structure of the three-chain unit. The smaller, particle 2, of molecular weight 42,500, α-helix content of 92% and dimensions of 180 Å × 20 Å, consists of three chains aligned side-by-side that presumably form a coiled coil. The high yields of particle 2 allow the conclusion that all of the α-helix of the epidermal keratin filament is present in the form of these discrete three-chain α-helical segments. The larger, particle 1, recovered during the earlier stages of digestion has a molecular weight of 100,000 to 110,000, α-helix content of 75%, average dimensions of 400 Å × 20 Å and also consists of three chains aligned side-by-side. It contains two α-helical segments corresponding to particle 2 which are located at the amino -terminal and carboxyl-terminal ends and are separated by a region of non-helix. Particle 1 contains all of the α-helix and therefore is the major portion of the three-chain unit of the keratin filament. The products resulting from reaction of intact filament subunits with N-bromosuccinimide suggest that particle 1 is formed during digestion by removal of regions of non-helix from each end of this unit.The structure of the three-chain unit of the bovine epidermal keratin filament may thus be viewed as three polypeptide subunits aligned side-by-side with two discrete coiled coil α-helical segments interspersed with regions of non-helix.  相似文献   

4.
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation– condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The “ragged” and “branched” filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg–F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.  相似文献   

5.
Summary— The three-dimensional architecture of the nucleolonema of Vicia faba has been studied by applying a silver impregnation technique to serial ultrathin sections. This technique disclosed lateral and transverse segments of the nucleolonema which were heavily impregnated with silver. The lateral profiles of the nucleolonema segments were classified into three main categories; a segment made up of one to several rod-like filaments (type I); a ladder-like segment consisting of two parallel and of transverse filaments (type II); and a last type constructed from two parallel filaments (type III). Tracing of the lateral segments through serial sections has indicated that type I first appears, then either type II or III and finally type I reappears at the corresponding sites on sections. Types II and III remained constant in width, about 1.0 μm, along their longitudinal axes whereas the width of type I was significantly smaller than that of the two former. The lateral filaments of both types II and III showed heterogeneity in width on account of the presence of knobs intermittently distributed along them. The thickness of these knobs was about 0.35 μm. Combining the observations on serial ultrathin sections and the morphometrical data it is very probable that the elementary structure of the nucleolonema is a 0.35-μm thick filament that tightly coils up into a solenoid structure with a thickness of approximately 1.0 μm. This model can explain the appearance of open- and closed-argyrophilic rings in serial sections since transverse segments of the solenoid are expected to show the argyrophilic rings. The elementary filament of the nucleolonema solenoid was sometimes loosened. Judging from our cytochemical data at the electron microscope level, some argyrophilic proteins appear to reside in the axial space of the solenoid but both DNA and RNA were not detectable in this space.  相似文献   

6.
Angle-layered aggregates of F-actin are net-like structures induced by Mg2+ concentrations below that used to form paracrystals. These aggregates incorporate the angular disorder of subunits, which has been described elsewhere for isolated actin filaments. Because this disorder is incorporated into the aggregates in solution at the time they are formed, the possibility of negative stain preparation being responsible for the disorder is excluded. The simple two-layered geometry of the angle-layered aggregate provides information about the shape of the component actin filaments free from the superposition of large numbers of layers. A model for the filament shape, derived from single filaments and confirmed by the angle-layered aggregate, is different from those that have previously emerged from paracrystal studies. An understanding of the interfilament bond in both the angle-layered aggregate and the paracrystal allows one to reconcile these different models. We have found a bipolar bonding rule, with staggered crossover points in the angle-layered aggregate, which we suggest is also responsible for Mg2+ paracrystals. This bonding rule can explain the apparent alignment of crossover points in adjacent filaments in paracrystals as a consequence of the superposition of staggered filaments.  相似文献   

7.
I reported previously (Higashi-Fujime, S., 1982, Cold Spring Harbor Symp. Quant. Biol., 46:69-75) that active movements of fibrils composed of F-actin and myosin filaments occurred after superprecipitation in the presence of ATP at low ionic strengths. When the concentration of MgCl2 in the medium used in the above experiment was raised to 20-26 mM, bundles of F-actin filaments, in addition to large precipitates, were formed spontaneously both during and after superprecipitation. Along these bundles, many myosin filaments were observed to slide unidirectionally and successively through the bundle, from one end to the other. The sliding of myosin filaments continued for approximately 1 h at room temperature at a mean rate of 6.0 micron/s, as long as ATP remained in the medium. By electron microscopy, it was found that most F-actin filaments decorated with heavy meromyosin pointed to the same direction in the bundle. Myosin filaments moved actively not only along the F-actin bundle but also in the medium. Such movement probably occurred along F-actin filaments that did not form the bundle but were dispersed in the medium, although dispersed F-actin filaments were not visible under the microscope. In this case, myosin filament could have moved in a reverse direction, changing from one F-actin filament to the other. These results suggested that the direction of movement of myosin filament, which has a bipolar structure and the potentiality to move in both directions, was determined by the polarity of F-actin filament in action.  相似文献   

8.
Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion.  相似文献   

9.
In the retinas of teleost fish, rod photoreceptors elongate in response to light. Light-activated elongation is mediated by the myoid of the rod inner segment and is actin-dependent. Inner segment F-actin filaments form bundles running parallel to the cell's long axis. We examined the mechanism of rod elongation using mechanically-detached rod fragments, consisting of the motile inner segment and sensory outer segment (RIS-ROS). When RIS-ROS are isolated from dark-adapted green sunfish and cultured in the light, they elongate 15 microns at 0.3-0.6 microns/min. Elongation was inhibited 65% by 0.1 microM Cytochalasin D, suggesting a requirement for actin assembly. To determine the extent of assembly during elongation, we used three approaches to measure the F-actin content in RIS-ROS: detection of pelletable actin by SDS-PAGE after detergent-extraction of RIS-ROS; quantification of fluorescein-phalloidin binding by fluorimetry, fluorescence-activated cell sorting and image analysis; estimation of total F-actin filament length by electron microscopy. All three assays indicated that no net assembly of RIS-ROS F-actin accompanied myoid elongation. An increase in F-actin content within the elongated myoid was counterbalanced by a decrease in F-actin content within the 13 microvillus-like calycal processes located at the end of the inner segment opposite to the growing myoid. O'Connor and Burnside (Journal of Cell Biology 89:517-524, 1981) showed that minus-ends of rod F-actin filaments are oriented towards the elongating myoid while plus-ends are oriented towards the shortening calycal processes. Our observations suggest that RIS-ROS elongation entails actin polymerization at the minus-ends of filaments coupled with depolymerization at the filament plus-ends.  相似文献   

10.
Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly contributes to the outer part of the massive base. Quantitative evaluation of successive crossover spacings along individual F-actin filaments revealed the deviations from the mean repeat to be compensatory, i.e., short crossovers frequently followed long ones and vice versa. The variable crossover spacings and diameter of the F-actin filament together with the local unraveling of the two long-pitch helical strands are explained in terms of varying amounts of compensatory "lateral slipping" of the two strands past each other roughly perpendicular to the filament axis. This intrinsic disorder of the actin filament may enable the actin moiety to play a more active role in actin-myosin-based force generation than merely act as a rigid passive cable as has hitherto been assumed.  相似文献   

11.
Summary The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution.The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5–1 m in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin.The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with a low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.  相似文献   

12.
T Oda  K Makino  I Yamashita  K Namba    Y Mada 《Biophysical journal》1998,75(6):2672-2681
We examined factors that affect the filament orientation in F-actin sols to prepare highly well-oriented liquid crystalline sols suitable for x-ray fiber diffraction structure analysis. Filamentous particles such as F-actin spontaneously align with one another when concentrated above a certain threshold concentration. This alignment is attributed to the excluded volume effect of the particles. In trying to improve the orientation of F-actin sols, we focused on the excluded volume to see how it affects the alignment. The achievable orientation was sensitive to the ionic strength of the solvent; the filaments were better oriented at lower ionic strengths, where the effective diameter of the filament is relatively large. Sols of longer filaments were better oriented than those of shorter filaments at the same concentration, but the best achievable orientation was limited, probably because of the filament flexibility. The best strategy for making well-oriented F-actin sols is therefore to concentrate F-actin filaments of relatively short length (<1 micrometer) by slow centrifugation in a low-ionic-strength solvent (<30 mM).  相似文献   

13.
Summary Changes in F-actin organization following mechanical isolation ofZinnia mesophyll cells were documented by rhodamine-phalloidin staining. Immediately after isolation, most cells contained irregular cortical actin fragments of varying lengths, and less than 5% of cells contained intact cortical filaments. During the first 8 h of culture, filament fragments were replaced by actin rings, stellate actin aggregates, and bundled filament fragments. Some of these aggregates had no association with organelles (free actin aggregates). Other aggregates were associated with chloroplasts, which changed in shape and location at the same time actin aggregates appeared. F-actin was concentrated within or around the nucleus in a small percentage of cells. After 12 h in culture, the percentage of cells with free actin rings and chloroplast-associated actin aggregates began to decline and the percentage of cells having intact cortical actin filaments increased greatly. Intermediate images were recorded that strongly indicate that free actin rings, chloroplast-associated actin rings, and other actin aggregates self-assemble by successive bundling of actin filament fragments. The fragmentation and bundling of F-actin observed in mechanically isolatedZinnia cells resembles changes in F-actin distribution reported after diverse forms of cell disturbance and appears to be an example of a generalized response of the actin cytoskeleton to cell stress.Abbreviations FITC fluorescein isothiocyanate - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - RhPh tetramethylrhodamine isothiocyanate-phalloidin  相似文献   

14.
H-protein is a component of the thick filaments of skeletal myofibrils. Its effects on the assembly of myosin into filaments and on the formation of light meromyosin (LMM) paracrystals at low ionic strength have been investigated. H-protein reduced the turbidities of myosin filament and LMM paracrystal suspensions. Electron microscopic observation showed that the appearances of the filaments prepared in the presence and absence of H-protein were different. The filament length was not substantially changed by H-protein, but the diameter of the myosin filament was markedly reduced. H-protein bound to LMM and co-sedimented with it at low ionic strength upon centrifugation. Two types of paracrystals, spindle-shaped and sheet-like, were observed in LMM suspensions. H-protein altered the structure of the LMM paracrystals, especially the spindle-shaped ones. The thickness of the spindle-shaped paracrystals was reduced when H-protein was present during LMM paracrystal formation. On the other hand, periodic features along the long axis of the sheet-like paracrystals were retained even at high ratios of H-protein to LMM. However, there were fewer sheet-like paracrystals in the LMM suspensions containing H-protein than in the control. These results suggest that H-protein interferes with self-association of myosin molecule into filaments due to its binding to the tail portion of the myosin. However, H-protein does not have a length-determining effect on the formation of myosin filaments.  相似文献   

15.
Cortactin and WASP activate Arp2/3-mediated actin filament nucleation and branching. However, different mechanisms underlie activation by the two proteins, which rely on distinct actin-binding modules and modes of binding to actin filaments. It is generally thought that cortactin binds to "mother" actin filaments, while WASP donates actin monomers to Arp2/3-generated "daughter" filament branches. Interestingly, cortactin also binds WASP in addition to F-actin and the Arp2/3 complex. However, the structural basis for the role of cortactin in filament branching remains unknown, making interpretation difficult. Here, electron microscopy and 3D reconstruction were carried out on F-actin decorated with the actin-binding repeating domain of cortactin, revealing conspicuous density on F-actin attributable to cortactin that is located on a consensus-binding site on subdomain-1 of actin subunits. Strikingly, the binding of cortactin widens the gap between the two long-pitch filament strands. Although other proteins have been found to alter the structure of the filament, the cortactin-induced conformational change appears unique. The results are consistent with a mechanism whereby alterations of the F-actin structure may facilitate recruitment of the Arp2/3 complex to the "mother" filament in the cortex of cells. In addition, cortactin may act as a structural adapter protein, stabilizing nascent filament branches while mediating the simultaneous recruitment of Arp2/3 and WASP.  相似文献   

16.
利用原子力显微镜(atomic force microscope,AFM)和透射电子显微镜(transmission electron microscope,WEM)技术,研究了低浓度肌动蛋白在体外简单热力学体系中,形成的自组织复合纤维结构。肌动蛋白在体外通过自组织过程能够聚合形成大尺度的、离散的、复杂的聚集纤维体系,分散的单根微丝较少;在微丝稳定剂鬼笔环肽干预下,肌动蛋白通过受调控的自装配过程,主要形成分散的单根微丝,以及少量由单根微丝组成的微丝束和纤维分支等简单微丝聚集结构。  相似文献   

17.
A recent perspective [Erickson, H. (2012). Bacterial actin homolog ParM: arguments for an apolar, antiparallel double helix. J. Mol. Biol., 422, 461-463] by Harold Erickson has suggested that published reconstructions of bacterial ParM filaments from three different laboratories may have artifactually imposed polarity upon a filament that is really bipolar, with the two strands running in opposite directions. We show that Erickson's model of a bipolar filament can be easily distinguished from a polar filament by helical diffraction, since the asymmetric unit in a bipolar filament would be twice the size as that in a polar filament. Existing data from both electron cryo-microscopy and X-ray diffraction exclude a bipolar model. We adopt the suggestion put forward by Erickson to process filaments, assuming that they are bipolar, and show that the resulting filaments are polar.  相似文献   

18.
Summary F-actin distribution during male meiosis in Magnolia soulangeana was studied by means of fluorescence microscopy following staining with rhodaminephalloidin. Actin filaments were observed to persist during all of the developmental stages of meiosis. Four main types of configurations were recognized: (1) peripheral filaments underlying the plasma membrane (cortical network); (2) filaments dispersed throughout the inner cytoplasm (central cytoplasmic network); (3) filaments associated with the meiotic spindles; (4) filaments associated with the phragmoplasts. The cortical and central cytoplasmic filaments exhibited different behaviours. Whereas the cortical network remained present in an apparently unchanged form during all of the meiotic stages, the central cytoplasmic filaments, although they never completely disappeared, were reduced and concentrated around the nucleus at the end of prophase. At metaphase, fluorescent spindles consisting of filament bundles running from pole to pole or being interrupted at the equatorial zone could be seen. At the end of both the first and second division of meiosis, fluorescent bands of filaments (disks) appeared at the level of the cell division planes (equatorial regions) where cleavage furrows were constituted. These cleavage furrows did not form when floral buds were cultivated in a cytochalasin-containing medium. Our results show that during microsporogenesis in M. soulangeana the actin filaments constitute a highly complex and dynamic system that is involved in particular in cytoplasm cleavage of the meiocytes.  相似文献   

19.
Nonquasineutral electron current filaments with the azimuthal magnetic field are considered that arise due to the generation of electron vorticity in the initial (dissipative) stage of evolution of a current-carrying plasma, when the Hall number is small (σB/en e c ? 1) because of the low values of the plasma conductivity and magnetic field strength. Equilibrium filamentary structures with both zero and nonzero net currents are considered. Structures with a zero net current type form on time scales of t < t sk = (r 0ω pe /c)2 t st, where t sk is the skin time, t st is the typical time of electron-ion collisions, and r 0 is the radius of the filament. It is shown that, in nonquasineutral filaments in which the current is carried by electrons drifting in the crossed electric (E r ) and magnetic (B θ) fields, ultrarelativistic electron beams on the typical charge-separation scale r B = B/(4πen e ) (the so-called magnetic Debye radius) can be generated. It is found that, for comparable electron currents, the characteristic electron energy in filaments with a nonzero net current is significantly lower than that in zero-net-current filaments that form on typical time scales of t < t sk. This is because, in the latter type of filaments, the oppositely directed electron currents repel one another; as a result, both the density and velocity of electrons increase near the filament axis, where the velocities of relativistic electrons are maximum. Filaments with a zero net current can emit X rays with photon energies ? ω up to 10 MeV. The electron velocity distributions in filaments, the X-ray emission spectra, and the total X-ray yield per unit filament length are calculated as functions of the current and the electron number density in the filament. Analytical estimates of the characteristic lifetime of a radiating filament and the typical size of the radiating region as functions of the plasma density are obtained. The results of calculations are compared with the available experimental data.  相似文献   

20.
A consensus view on the three-dimensional structure of the F-actin filament and the relative strength of the intersubunit contacts in the filament has been established from an atomic filament model and recent three-dimensional reconstructions from electron micrographs of F-actin filaments. Functional implications of recent structural and biochemical data indicating a rather dynamic filament structure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号