首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the results of viscosity determinations on aqueous solutions of human, bovine and pig IgG immunoglobulins over a wide range of concentrations and at temperatures ranging from 5 degrees C to 55 degrees C. On the basis of the generalized Arrhenius formula, the viscosity temperature and the viscosity concentration dependence of the solutions are discussed. By applying an asymptotic form of the generalized Arrhenius formula, such rheological quantities as the intrinsic viscosity and Huggins coefficient were calculated.  相似文献   

2.
The Effect of Sweeteners on Perceived Viscosity   总被引:1,自引:1,他引:0  
Two different sweeteners, sucrose and aspartame, were matchedin perceived sweetness intensity. These solutions were thickenedwith carboxymethylcellulose to six different viscosity levels.Sucrose and aspartame appeared to decrease perceived viscosityof the solutions at a specific sweetener concentration, at allviscosity levels. However, in a second similar experiment withthree viscosity levels and seven sucrose concentrations no effectof sucrose concentration on perceived viscosity was found. Reasonsfor these conflicting results are discussed. No definite conclusionsabout the effect of sweeteners on perceived viscosity can asyet be drawn. Chem. Senses 20: 441–450, 1995.  相似文献   

3.
The binding of vanadate (V) to human serum albumin (HSA) in infusion solutions, to human fresh frozen plasma (FFP), and to human transferrin (TF) was investigated over a wide concentration range. Free V concentrations were obtained by ultrafiltration. Total and free V concentrations were determined using electrothermal atomic absorption spectrometry (ETAAS). Binding parameters were obtained by non-linear regression. V only bound appreciably to HSA at low concentrations (<1 microM). The binding capacity of HSA was about 1000-fold lower than that of FFP and TF per mole of protein. Binding to FFP and TF in the concentration range investigated could be described by a combination of saturable and additional non-saturable binding. The respective maximal binding capacities (B(max), microM), dissociation constants (k(D), microM), and proportionality constants (C) for the non-saturable, linear binding were B(max)=27, k(D)=2.5, C=0.19 for FFP and B(max)=47, k(D)=0.47, C=0.38 for TF. The results suggest that V is predominantly bound to transferrin in FFP. It is concluded that HSA in infusion solutions represents a reservoir of readily accessible V. Nevertheless, given the high binding capacity of transferrin in plasma, the amount of vanadate delivered via the brief administration of HSA solutions is unlikely to be of major importance.  相似文献   

4.
Viscosities of aqueous solutions of guanidine hydrochloride (GuHCl) were measured in the presence of varying amounts of glucose. At high concentrations of glucose or GuHCl, the measured viscosities showed significant deviation from the values computed using a method proposed by Tanford (1966, J Biol Chem 241:3228-3232). This method was originally derived to allow the calculation of the effects of buffer or low concentrations of salts and other additives on the density and viscosity of aqueous solutions of urea or GuHCl. Recently it has been used to estimate the viscosity of denaturant solutions that contain high concentrations of viscogens. Our results show that the extrapolation of this approach to solutions of highly concentrated viscous co-solutes leads to significant errors. The implications for experimental studies of the viscosity dependence of conformational transitions in proteins is discussed.  相似文献   

5.
The effect of low and high viscosity hemodilution with plasma expanders on the extent of the cell free layer (CFL) width was analyzed in the microcirculation of the exteriorized cremaster muscle preparation of Sprague-Dawley male rats. Anesthetized animals were subjected to 40% hemodilution by blood volume, using 5% human serum albumin (HSA) or 6% Hetastarch (hydroxyethyl starch 670 kDa). Arterioles (n=5 for each treatment) were investigated. Mean arterial pressure, heart rate, vessel flow velocity and CFL width were measured at baseline and 5, 20 and 40 min post-exchange transfusion. Blood and plasma viscosity was determined from terminal blood collections. CFL width and pseudoshear rate, diameter and flow, normalized to baseline, were significantly elevated at all post-exchange assessments. Peripheral vascular resistance decreased. The increase of the CFL width was greater with HSA by comparison with Hetastarch hemodilution (p<0.05). Hetastarch blood and plasma viscosities increased significantly compared to those of HSA (p<0.05). This study shows that CFL widths are influenced by plasma expander viscosity, a phenomenon proportional to the increase in molecular weight of the colloids in solution.  相似文献   

6.
The viscosity of ovalbumin aqueous solutions was studied as a function of temperature and of protein concentration. Viscosity-temperature dependence was discussed on the basis of the modified Arrhenius formula at temperatures ranging from 5 to 55 degrees C. The activation energy of viscous flow for hydrated and unhydrated ovalbumin was calculated. Viscosity-concentration dependence, in turn, was discussed on the basis of Mooney equation. It has been shown that the shape parameter S decreases with increasing temperature, and self-crowding factor K does not depend on temperature. At low concentration limit the numerical values of the intrinsic viscosity and of Huggins coefficient were calculated. A master curve relating the specific viscosity etasp to the reduced concentration c[eta], over the whole range of temperature, was obtained and the three ranges of concentrations: diluted, semi-diluted and concentrated, are discussed. It has been proved that the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent for ovalbumin does not depend on temperature.  相似文献   

7.
Refolding human serum albumin at relatively high protein concentration   总被引:1,自引:0,他引:1  
The conditions for refolding reduced and denatured human serum albumin (HSA) were investigated with a view to maximising the yield of native monomeric albumin. Refolding by dialysis was found to be preferable to dilution as a means of chaotrope (urea) and reductant (2-mercaptoethanol) removal. Dialysis of denatured HSA solutions containing 4-8 M urea and 14 mM 2-mercaptoethanol at pH 10.0 was found to be optimal for HSA refolding. The yield of monomeric HSA was maximal (94%) for dialysis in the presence of EDTA (1 mM) and sodium palmitate (20 microM). Using this protocol it was possible to refold HSA at concentrations in excess of 5 mg.ml-1 whilst maintaining a high recovery of native monomer. These results represent a considerable improvement on established methods of HSA refolding.  相似文献   

8.
Sodium caprylate was added to a pharmaceutical-grade human serum albumin (HSA) to stabilize the product. In this study we have aimed to establish how caprylate ligand protects HSA from thermal degradation. The fatty acid stabilizer was first removed from commercial HSA by charcoal treatment. Cleaned HSA was made to 10% w/v in pH 7.4 buffered solutions and doped with sodium caprylate in serial concentrations up to 0.16 mmol/g-protein. These solutions as well as a commercial HSA, human serum, and enriched-albumin fraction were subjected to differential scanning calorimetry (DSC) within the temperature range of 37–90°C at a 5.0°C/min scanning rate. The globular size of the cleaned HSA solutions was measured by dynamic light scattering. The denaturing temperatures for albumin with sodium caprylate and a commercial one were significantly higher than for albumin only. It was found that the protein globules of cleaned HSA were not as stable as that of the native one due to aggregation, and the caprylate ion may reduce the aggregation by enlarging the globules’ electrical double layer. A rational approximation of the Lumry-Eyring protein denaturation model was used to treat DSC denaturing endotherms. The system turned from irreversible dominant Scheme: to reversible dominant Scheme: with the increase in caprylate concentration from null to ~0.08 mmol/g-protein. It was postulated that the caprylate ligand may decrease the rate of reversible unfolding as it binds to the IIIA domain which is prone to reversible unfolding/refolding and causes further difficulty for irreversible denaturation which, in turn, HSA can be stabilized.KEY WORDS: differential scanning calorimetry, human serum albumin, Lumry-Eyring model, protein denaturation, sodium caprylate  相似文献   

9.
The viscosity behaviour of alginate-Cu2+-NaCl systems has been experimentally examined at various concentrations of cupric and sodium salts. Dependence of the intrinsic viscosity of alginate as a function of NaCl concentration is discussed to supplement the previous study which shows a similar behaviour to that found for other polyelectrolytes in aqueous solution in the presence of an added salt. The effects of sodium ions on the cupric association in cupric-induced alginate solutions were investigated by means of viscosity measurements. The mechanisms of complex formation in the presence of the simple added salt were studied. It was found that, at a given NaCl concentration, the viscosity of the mixture will pass through a maximum with increasing cupric concentration. The amounts of cupric cations corresponding to the maximum depends on the concentration of NaCl in the solution. Comparison of salt effects on the viscosity behaviour of alginate solutions during sol—gel transition reveals that an optimum NaCl concentration of 10−2 mol 1−1 exists where the viscosity of the mixture gives a maximum value at a certain cupric amount. This result indicates that salt effects play an important role in the sol—gel transition of the polyelectrolyte solutions. The observed phenomenon was interpreted in terms of conformational change of polyelectrolyte chain due to the addition of salt resulting in a different cross-linking mode in the system.  相似文献   

10.
Modification of proteins by nonenzymatic glycation is one of the underlying factors that contribute to the development of the complications of diabetes. Human serum albumin (HSA) is one of the major targets of interaction with glucose through the Maillard reaction. The effects of 1 and 5 mg/ml glucose concentrations, which are consistent with blood glucose levels found in diabetic patients, on human serum albumin were studied by circular dichroism and fluorescence spectroscopy in sodium phosphate buffer, pH 7.4. Partial denaturation and changes in the structural integrity of HSA are caused by glycation at lower (1 mg/ml) and higher (5 mg/ml) concentrations of glucose. To study the relationship between structure and function, we investigated the interaction of L-tryptophan (L-Trp) with glycated and non-glycated HSA. The results showed that L-Trp, as the only free amino acid that substantially binds to HSA, has a lower affinity for the glycated form (especially at low concentrations of glucose) than for non-glycated HSA.  相似文献   

11.
The objective of the study was to investigate the effects of plasma viscosity after hemodilution on the thickness of the erythrocyte cell free layer (CFL) and on the interface between the flowing column of erythrocytes and the vascular endothelium. The erythrocyte CFL thickness was measured in the rat cremaster muscle preparation. Plasma viscosity was modified in an isovolemic hemodilution, in which the systemic hematocrit (Hctsys) was lowered to 30%. The plasma expanders (PE) of similar nature and different viscosities were generated by glutaraldehyde polymerization of human serum albumin (HSA) at various molar ratios glutaraldehyde to HSA: (i) unpolymerized HSA; (ii) PolyHSA24:1, molar ratio = 24 and (iii) PolyHSA60:1, molar ratio = 60. The HSA viscosities determined at 200 s(-1) were 1.1, 4.2 and 6.0 dyn x cm(-2), respectively. CFL thickness, vessel diameter and blood flow velocity were measured, while volumetric flow, shear rate and stress were calculated. Hemodilution with PolyHSA60:1 increased plasma viscosity and the blood showed marked shear thinning behavior. CFL thickness decreased as plasma viscosity increased after hemodilution; thus the CFL thickness with HSA and PolyHSA24:1 increased compared to baseline. Conversely, the CFL thickness of PolyHSA60:1 was not different from baseline. Blood flow increased with both PolyHSA's compared to baseline. Wall shear rate and shear stress increased for PolyHSA60:1 compared to HSA and PolyHSA24:1, respectively. In conclusion, PE viscosity determined plasma viscosity after hemodilution and affected erythrocyte column hydrodynamics, changing the velocity profile, CFL thickness, and wall shear stress. This study relates the perfusion caused by PolyHSA60:1 to hemodynamic changes induced by the rheological properties of blood diluted with PolyHSA60:1.  相似文献   

12.
The thermal and rheological properties of spray-dried, ethanol-precipitated, purified, and deacetylated spruce galactoglucomannans (GGM) were investigated by rheological measurements and differential scanning calorimetry. The shear rate dependence of viscosity and the effects of the drying method, temperature, ionic strength, and deacetylation on rheological properties were studied. GGM solutions exhibited a shear thinning behaviour. GGM solutions did not obey the Cox–Merz rule. The storage modulus of GGM solutions increased with an increase in concentration; gradually until a concentration of 5%, but rapidly at higher concentrations. Ethanol-precipitated GGM solutions showed a more elastic behaviour than spray-dried GGM solutions. Deacetylation caused an increase in apparent viscosity and more significantly in storage modulus. The storage modulus increased slightly with a decrease in temperature. A small amount addition of NaCl slightly changed the oscillatory behaviour. The effects of above factors were discussed in terms of molecular interactions. The rheological measurements of GGM solutions provide the basis of functionalities of GGM solutions.  相似文献   

13.
Degradation products of titanium implants include free ions, organo-metallic complexes, and particles, ranging from nano to macro sizes. The biological effects, especially of nanoparticles, is yet unknown. The main objective of this study was to develop Ti-protein antigens in physiological solutions that can be used in testing of cellular responses. For this purpose, 0.1% TiO2 nanoparticles less than 100 nm were mixed with human serum albumin (HSA), 0.1% and 1%, in cell culture medium (DMEM, pH 7.2). The Ti concentrations in the resulting solutions were analyzed by inductively coupled plasma mass spectrometry. The stability of the nanoparticles in suspension was analyzed by UV-vis spectrophotometer and Dynamic Light Scattering. The concentration of Ti in suspension was dependent on the presence and concentration of HSA. Albumin prevented high aggregation rate of TiO2 nanoparticles in cell culture medium. It is shown that nano TiO2-protein stable aggregates can be produced under physiological conditions at high concentrations, and are candidates for use in cellular tests.  相似文献   

14.
Cibacron Blue F3GA was covalently attached onto monosize poly(glycidyl methacrylate) [poly(GMA)] beads for removal of human serum albumin (HSA) from human serum. Monosize poly(GMA) beads, 1.6 microm in diameter, were produced by dispersion polymerization. Cibacron Blue F3GA loading was 1.73 mol/g. HSA adsorption experiments were performed by stirred-batch adsorption. The non-specific adsorption of HSA was low (0.8 mg/g polymer). Dye attachment onto the monosize beads significantly increased the HSA adsorption (189.8 mg/g). The maximum HSA adsorption was observed at pH 5.0. With an increase of the aqueous phase concentration of sodium chloride, the adsorption capacity decreased drastically. The equilibrium adsorption of HSA significantly decreased with increasing temperature. The elution studies were performed by adding 0.1 M Tris/HCl buffer containing 0.5 M NaSCN to the HSA solutions in which adsorption equilibria had been reached. The elution results demonstrated that the adsorption of HSA to the adsorbent was reversible. The depletion efficiencies for HSA were above 87% for all studied concentrations. To test the efficiency of HSA removal from human serum, proteins in the serum and eluted portion were analyzed by two-dimensional gel electrophoresis. Eluted proteins include mainly albumin, and a small number of nonalbumin proteins such as apo-lipoprotein A1, sero-transferrin, haptoglobulin and alpha1-antitrypsin were bound by the dye-affinity beads. IgA was not identified in eluted fraction.  相似文献   

15.
This paper presents the results of viscosity determinations on aqueous solutions of equine, porcine and rabbit serum albumin over a wide range of concentrations and at temperatures ranging from 5 degrees C to (42-45) degrees C. The results are compared with human and bovine serum albumin previously studied. Viscosity-temperature dependence is discussed on the basis of the modified Arrhenius formula. The effective specific volume, the activation energy and entropy of viscous flow for all investigated albumins are compared. Viscosity-concentration dependence, in turn, is discussed on the basis of Mooney equation. Based on the assumption that theoretical and experimental values of Simha factor--at high temperature limit--are equal to each other, the hydrodynamic volume of the studied albumins has been calculated. The numerical values of a self-crowding factor were also obtained. At low concentration limit, the numerical values of the intrinsic viscosity and of Huggins coefficient were compared.  相似文献   

16.
Ellipsometric studies have proved that monoclonal immunoglobulin G(IgG) against gamma-interferon (gamma-INF) and immunoglobulin fraction (Ig-fraction) of rabbit blood serum against human serum albumin (HSA) are adsorbed according to the Langmuir model on the surfaces of mirror plates of covalently modified gamma-INF or HSA, respectively. The maximum surface concentrations (Tmax) and equilibrium adsorption constants (K) for IgG and Ig-fraction are equal to 2.57 pmol/cm2 and 2 x 10(7) M-1, 3.3 mg/m2 and 0.1 cm3/micrograms, respectively. The additional treatment of gamma-INF modified surfaces with Tween-20 leads to an increase of K IgG ut to 2.7 x 10(-7) M-1 while Tmax decreases up to 1.12 pmol/cm2 which is conditioned by the blocking of protein non-specific binding sites. The role of specific and non-specific interactions of IgG and Ig-fraction with covalently immobilized antigens was studied at antibody-antigen mixture adsorption. The necessity to apply this method to quantitative determination of gamma-IHF and HSA in solutions was proved.  相似文献   

17.
The heat capacity changes for interaction of human serum albumin (HSA) and a cationic surfactant—cetylpyridinium chloride (CPC), were studied at conditions close to physiological (50 mM HEPES or phosphate buffer, pH 7.4 and 160 mM NaCl) carrying out isothermal calorimetric titrations (ITC) at various temperatures (20-40 °C). ITC measurements indicated that the small endothermic changes associated with CPC demicellization were temperature independent at these conditions. Surprisingly, important enthalpy changes associated with binding of CPC to HSA were exothermic and temperature independent at lower concentrations (below 0.022 mM) of CPC and endothermic and temperature dependent at higher concentrations of CPC. The values of heat capacity changes were obtained for each studied concentration of CPC from the plot of enthalpy changes vs temperature. The obtained results demonstrate the temperature independence of heat capacity changes at entire range of studied CPC concentrations. Both enthalpograms and heat capacity curves indicate the two-step mechanism of HSA folding changes due to its interactions with CPC. The first step corresponds to transition from native state to partially unfolded state and the second to unfolding and to the loss of tertiary structure. The analysis of the results indicates that predominant cooperative unfolding occurs at CPC/HSA molar ratio region between 25 and 30. Such information could not be extracted from thermograms and describes the role of heat capacity as a major thermodynamic quantity giving insight on physical, mechanistic and even atomic-level into how HSA may unfold and interact with CPC. The effect of CPC binding on HSA intrinsic fluorescence, UV-Vis and CD spectra were also examined. Hence, the analysis of spectral data confirms the ITC results about the biphasic mechanism of HSA folding changes induced by CPC. The CD measurement also represents the conservation of considerable secondary structure of HSA due to interaction with CPC.  相似文献   

18.
The use of many plasma expanders (PEs) is often limited by undesirable side effects, such as red blood cell (RBC) aggregation (hydroxyethyl starch), nephrotoxicity (dextran), and extravasation (albumin). Despite its natural prevalence in the bloodstream, human serum albumin (HSA) can increase the risk of mortality when administered to patients with increased vascular permeability (i.e., patients suffering from burns, septic shock, and endothelial dysfunction). The harmful extravasation of HSA can be limited by polymerizing HSA to increase its molecular size. In this study, HSA was nonspecifically cross-linked with glutaraldehyde at different cross-link densities by varying the molar ratio of glutaraldehyde to HSA. The results of this study show that the weight-averaged molecular weight (MW), viscosity, and extent of RBC aggregation of polymerized HSA increases with increasing cross-link density, whereas the colloid osmotic pressure (COP) decreases with increasing cross-link density. Interestingly, circular dichroism measurements indicate that the secondary structure of HSA is unaffected by polymerization. Altogether, these results show that glutaraldehyde can effectively cross-link HSA to produce high MW polymers, yielding a novel series of potential PEs that exhibit low COP and high viscosity.  相似文献   

19.
This paper describes new measurements on the creep rheological behaviour of gelatin gels from both traditional mammalian and piscine sources. Measurements on a series of concentrations of gels were obtained using a high-precision controlled stress rheometer. Results for the concentration dependence of compliance are close to those expected from dynamic oscillatory measurements of gel modulus, assuming ideal elasticity. The concentration dependence of viscosity approximates power law behaviour, with eta~C( approximately 2-3), lower than the exponent expected for semi-dilute solutions. The apparent contradiction implied by this is discussed and a novel gel viscosity versus concentration state diagram presented.  相似文献   

20.
The hypothesis that the internal viscosity of erythrocytes is governed by the intracellular hemoglobin (Hb) concentration is examined. Here viscosity is determined by labeling of the cytoplasmic reduced glutathione with the spin label maleimido-Tempo. Erythrocyte populations with different Hb concentrations in isosmotic conditions were obtained through incomplete lysis, followed by cell resealing, and discontinuous density gradient separation. This procedure maintains normal cell shape and volume. Microviscosity of membrane-free Hb solutions was measured by addition of spin labeled glutathione. It was found that microviscosity values are similar for the erythrocyte cytoplasm and for Hb solutions of equivalent concentrations, showing that the erythrocyte membrane does not have any influence on internal microviscosity. The dependence of the microviscosity on the concentration of Hb solutions was compared with results of macroscopic viscosity obtained by other authors. It is concluded that microviscosity is sensitive to individual properties of the Hb molecule (intrinsic viscosity), but that it is not sensitive to intermolecular interactions. As the microviscosity behavior as a function of Hb concentration is the same in Hb solutions as in the erythrocyte cytoplasm, the inferences regarding macroscopic viscosity in Hb solutions could be translated to the rheological properties of the erythrocyte cytoplasm. Thus, these properties could be predicted from the values of the mean corpuscular Hb concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号