首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New copper(I) complexes have been synthesised from the reaction of CuCl with 4-(diphenylphosphane)benzoic acid and lithium tris(1H-pyrazol-1-yl)methanesulfonate, Li(SO(3))C(pz)(3), sodium hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate, NaHB[3-(CF(3))pz](3), potassium dihydrobis(1H-1,2,4-triazol-1-yl)borate, KH(2)B(tz)(2), hydrotris(1H-1,2,4-triazol-1-yl)borate, KHB(tz)(3), sodium hydrotris(1H-pyrazol-1-yl)borate, NaHB(pz)(3), potassium hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate KHB(3,5-Me(2)Pz)(3) or potassium hydrotris(4-bromo-1H-pyrazol-1-yl)borate KHB(4-Brpz)(3). The complexes obtained have been characterized by elemental analyses and FT-IR in the solid state, and by NMR (1H and 31P[(1)H]) spectroscopy and conductivity measurements in solution. The solution data are consistent with partial dissociation of the sterically hindered complexes by way of breaking of Cu-P and Cu-N bonds. Electrospray mass spectrometry has been used to investigate the relative properties of the 4-(diphenylphosphane)benzoic acid and of the "scorpionate" ligands towards copper(I) ions. Chemiluminescence technique was used to evaluate the superoxide scavenging activity of these new copper complexes.  相似文献   

2.
Two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline, [Cu(o-phen)(2)(cnge)](NO(3))(2).2H(2)O (1) and [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)] (2), have been synthesized using different experimental techniques and characterized by elemental analyses, FTIR, diffuse and UV-vis spectra and EPR and magnetic moment measurements techniques. The crystal structures of both complexes were solved by X-ray diffraction methods. Complex (1) crystallizes in the monoclinic space group C2/c with a=12.621(5), b=31.968(3), c=15.39(1)A, beta=111.68(4) degrees, and Z=8 and complex (2) in the monoclinic space group P2(1)/n with a=10.245(1), b=13.923(2), c=12.391(2)A, beta=98.07(1) degrees, and Z=4. The environments of the copper(II) center are trigonal bipyramidal (TBP) for [Cu(o-phen)(2)(cnge)](2+) and an elongated octahedron for [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)]. Solution studies have been performed to determine the species distribution. The superoxide dismutase (SOD) activities of both complexes have also been tested in order to determine if these compounds mimic the enzymatic action of the enzyme SOD that protects cells against peroxide radicals.  相似文献   

3.
Four new complexes of uracilato and 5-halouracilato with the divalent metal ions Cu(II), Zn(II) and Ni(II) were obtained and structurally characterized. [Cu(uracilato- N(1))(2)(NH(3))(2)].2(H(2)O) (1) and [Cu(5-chlorouracilato-N(1))(2)(NH(3))(2)](H(2)O)(2) (2) complexes present distorted square planar co-ordination geometry around the metal ion. Although an additional axial water molecule is present [Cu(II)-OH(2)=2.89 A (for 1) and 2.52 A (for 2)] in both cases, only in the complex 2 would be considered in the limit of a bond distance. The Zn(II) in [Zn(5-chlorouracilato-N(1))(NH(3))(3)].(5-chlorouracilato-N(1)).(H(2)O) presents a tetrahedral co-ordination with three ammonia molecules and the N(1) of the corresponding uracilato moiety. A non-coordinated uracilato molecule is present as a counterion and a recognition between co-ordinated and free ligands, by means a tandem of H-bonds, should be mentioned. Finally, the complex [Ni(5-chlorouracilato-N(1))(2)(en)(2)] (H(2)O)(2) (where en is ethylenediamine) presents a typical octahedral trans co-ordination with additional hydrogen bonds between 5-chlorouracilato and the NH(2) groups of ethylenediamine units.  相似文献   

4.
Three new complexes [Cu(L)(2)(NO(3))](NO(3))(H(2)O)(1/2)(CH(3)OH)(1/2) (1), [Cd(L)(2)(NO(3))(2)](H(2)O)(3) (2) and [Cd(L)(2)(ClO(4))(CH(3)OH)](ClO(4))(H(2)O)(1/4)(CH(3)OH) (3) (L=1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene) were synthesized and characterized by elemental analyses, IR and X-ray diffraction analysis. Among them, the Cu(II) and Cd(II) ions were both coordinated by four N donors from two distinct L ligands via N,N-bidentate chelating coordination mode. Additional weak interactions, such as the face-to-face pi-pi stacking and C-Hcdots, three dots, centeredO H-bonding interactions, linked the mononuclear unit into 1D chain and further into 2D network. Complexes 1-3 were subjected to biological assays in vitro against six different cancer cell lines. All of them exhibited cytotoxic specificity and notable cancer cell inhibitory rate. The interactions of 1-3 with calf thymus DNA were investigated by thermal denaturation, viscosity measurements, spectrophotometric and electrophoresis methods. The results indicate that these complexes bound to DNA by intercalation mode via the ligand L and had different nuclease activities, which were in good agreement with their DNA-binding strength. Moreover, the central metal ions of 1-3 played a vital role in DNA-binding behaviors, DNA-cleavage activities and cytotoxicities, whereas the contribution of the different counter anions to their bioactivities also should not be ignored.  相似文献   

5.
Neutral palladium(IV) complexes containing the bis(pyrazol-1-yl)borate ligand, PdMe3{(pz)2BH2}(L) [L=py-d5 (4), PMe2Ph (6)], are generated in solution by oxidative addition of iodomethane to [PdMe2{(pz)2BH2}] at −70 °C followed by addition of L; the Pd(IV) complexes reductively eliminate ethane above 0 °C. Stable Pt(IV) analogues of 4 and 6 have been isolated, and comparison of NMR spectra for Pd(IV) and Pt(IV) species support structural assignments for the unstable Pd(IV) complexes. The complex PtMe3{(pz)2BH2}(py) (1a) has been characterised by X-ray diffraction, together with Pt(mq)Me2{(pz)2BH2} (2) (mq=8-methylquinolinyl); both complexes show a fac-PtC3 configuration for Pt(IV), and for 2 the PtN distances are ∼0.03 Å shorter than in the isostructural Pd(IV) complex.  相似文献   

6.
Silver(I) derivatives [Ag(L)(PiBu3)] (L = H2B(tz)2 (dihydrobis(1H-1,2,4-triazol-1-yl)borate), HB(tz)3 (hydrotris(1H-1,2,4-triazol-1-yl)borate), Tp (hydrotris(1H-pyrazol-1-yl)borate), Tp∗ (hydrotris(3,5-dimethyl-1H-pyrazol-1-yl)borate), TpMe (hydrotris(3-methyl-1H-pyrazol-1-yl)borate), TpCF3 (hydrotris(3-trifluoromethyl-1H-pyrazol-1-yl)borate), Tp4Br (hydrotris(4-bromo-1H-pyrazol-1-yl)borate), HB(btz)3 (hydrotris(1H-1,2,4-benzotriazol-1-yl)borate), Tm (hydrotris(3-methy-1-imidazolyl-2-thione)borate), pzTp (tetrakis(1H-pyrazol-1-yl)borate), pz0TpMe (tetrakis(3-methyl-1H-pyrazol-1-yl)borate) have been synthesized from the reaction of [Ag(NO3)(PiBu3)2] with ML (M = Na or K) and characterized both in solution (1H- and 31P{1H} NMR, ESI MS spectroscopy, conductivity) and in the solid state (IR, single crystal X-ray structure analysis). These complexes are air-stable and light-sensitive and non-electrolytes in CH2Cl2 and acetone in which they slowly decompose, even with the strict exclusion of oxygen and light, yielding metallic silver and/or azolate (Az) species of formula [Ag(Az)(PiBu3)x] upon breaking of the bridging B-N(azole) bond. The solid state structures of [Ag(Tp)(PiBu3)], [Ag(TpMe)(PiBu3)], [Ag(TpCF3)(PiBu3)], [Ag{HB(btz)3}(PiBu3)], and [Ag(Tm)(PiBu3)] show that the silver atom adopts a distorted tetrahedral coordination geometry. [Ag(L)(PPh3)] can be easily obtained from the reaction of [Ag(L)(PiBu3)] with excess PPh3, whereas from the reverse reaction of [Ag(L)(PPh3)] with PiBu3a mixture of [Ag(L)(PiBu3)] and [Ag(L)]2 and [Ag(L)(PPh3)] was recovered. 31P{1H} NMR variable temperature NMR studies showed that in the pz0Tpx derivatives the scorpionate ligand acts as a bidentate donor, whereas tridentate coordination is found for all tris(azolyl)borate derivatives, both in solution and in the solid state. ESI MS data suggest the existence in solution of species such as [Ag(PiBu3)2]+ upon dissociation of the L ligand, and also the formation of dimeric species of the form [Ag2(L)(PiBu3)2]+.  相似文献   

7.
The [ReOX3(AsPh3)(OAsPh3)] (X = Cl or Br) complexes react with two equivalents of 3,5-dimetylopyrazole (3,5-Me2pzH) in acetone at room temperature to give [{Re(O)X2(3,5- Me2pzH)2}2(μ-O)] (1 and 2). In the case of [ReOBr3(AsPh3)(OAsPh3)], a small quantity of the dinuclear rhenium complex [{Re(O)Br(3,5-Me2pzH)}2(μ-O)(μ-3,5-Me2pz)2] (3) has been isolated next to the main product 2. Treatment of [ReOX3(PPh3)2] compounds with two equivalents of 3,5-Me2pzH in acetone at room temperature leads to the isolation of symmetrically substituted dinuclear rhenium complexes [{Re(O)X(PPh3)}2(μ-O)(μ-3,5-Me2pz)2] (4 and 5). Refluxing of [ReO(OEt)X2(PPh3)2] complexes with 3,5-Me2pzH in ethanol affords unsymmetrically substituted dinuclear rhenium [{Re(O)X(PPh3)}(μ-O)(μ-3,5-Me2pz)2{Re(O)X(3,5- Me2pzH)}] complexes (6 and 7). The complexes obtained in these reactions have been characterised by IR, UV-Vis, 1H and 31P NMR. The crystal and molecular structures have been determined for 1, 2, 3, 4, 6 and 7 complexes.  相似文献   

8.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

9.
Recently, we have found that some oxovanadium(IV) complexes are potent insulin-mimetic compounds for treating both type I and type II diabetic animals. However, the functional mechanism of oxovanadium(IV) complexes is not fully understood. In this report, we have shown that oxovanadium(IV)-picolinate complexes such as VO(pa)(2), VO(3mpa)(2), and VO(6mpa)(2) act on the insulin signaling pathway in 3T3-L1 adipocytes. Among them, VO(3mpa)(2) was found to be the highest potent activator in inducing not only the phosphotyrosine levels of both IRbeta and IRS but also the activation of downstream kinases in the insulin receptor, such as Akt and GSK3beta, which in turn translocated the insulin-dependent GLUT4 to the plasma membrane. Then, we examined whether or not oxovanadium(IV)-picolinates exhibit the hypoglycemic activity in STZ-induced diabetic mice, and found that VO(3mpa)(2) is more effective than the others in improving the hyperglycemia of the animals. Our present data indicate that both activation of insulin signaling pathway, which follows the GLUT4 translocation to the plasma membrane, and enhancement of glucose utilization by oxovanadium(IV) complexes cause the hypoglycemic effect in diabetic animals.  相似文献   

10.
Crystals of a novel platinum(II) complex with squarato ligand, [Pt(3)(mu(2)-C(4)O(4))(3)(H(2)NPr(i))(6)].3H(2)O (1) (H(2)NPr(i)=ipa), have been isolated from the aqueous solution of cis-[Pt(H(2)O)(2)(H(2)NPr(i))(2)]SO(4) and barium squarate. Slow evaporation of methanol solution of cis-[Pt(NO(3))(2)(H(2)NPr(i))(2)] (2) resulted in crystallization of nitrato complex. The single crystal X-ray diffraction method was used to determine structures of 1 and 2. Complex 1 crystallizes in a triclinic space group P1 with a=11.17380(10)A, b=14.4535(2)A, c=14.8010(2)A, alpha=86.0901(10) degrees , beta=78.4343(11) degrees , gamma=69.1915(5) degrees , and complex 2 in a monoclinic space group P2(1)/n, with a=10.1161(2)A, b=9.9188(2)A, c=13.3766(2)A, beta=102.7360(7) degrees . The X-ray structure analysis revealed that three platinum atoms in 1 are connected with three squarates which adopt bis(unidentate) binding modes. The squarato ligands span relatively long intramolecular Ptcdots, three dots, centeredPt distances (4.8842(3)-5.2699(3)A). A pair of cis positioned isopropylamine ligands completes a square planar coordination sphere of each Pt(II) ion. The square-planar coordination of complex 2 consists of two cis positioned isopropylamine ligands and two nitrato ligands. The results of cytotoxicity assay of trimer 1, monomer 2 and cis-diamminedichloroplatinum(II) (cisplatin) performed on human bladder tumor cell line T24 provide evidence that complex 2 is less cytotoxic compared to cisplatin and that the survival of tumor cells after exposure to 1 was minimally reduced.  相似文献   

11.
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py=pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2h of incubation. The complex with concentrations lower than 1x10(-4)M did not show toxicity in B16-F10 murine cells. The complex in solution is toxic at higher concentrations (>1x10(-3)M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by irradiation with light only.  相似文献   

12.
Copper-based transition metal complexes performing single- and double-strand scission of DNA have been studied. The dinuclear complexes [Cu(2)(L)(2)(OCH(3))(2)(NH(3))(2)] and [Cu(2)(L)(2)(OCH(3))(2)(DMSO)(2)] are more active than the corresponding mononuclear [Cu(L)(2)(py)(2)] (where HL= N-(4-methylbenzothiazol-2-yl)benzenesulfonamide), suggesting that the dinuclearity is an important factor in the oxidative cleavage of DNA. The cleavage efficiency of the complexes depends on the reducing agent used in the process, the tandem ascorbate/H(2)O(2) being the most efficient. PAGE analyses have shown that these complexes cleave DNA without sequence selectivity. The DNA degradation process takes place mainly by C1' oxidation, but C4' and C5' oxidations cannot be ruled out as minor pathways. These copper complexes preferably oxidize guanine under mild conditions, but under more drastic conditions the oxidation reactivity appears to be T>G>C>A, suggesting the intervention of hydroxyl radicals as active species.  相似文献   

13.
We hypothesize that plasma volume decrease (DeltaPV) induced by high-altitude (HA) exposure and intense exercise is involved in the limitation of maximal O(2) uptake (VO(2)(max)) at HA. Eight male subjects were decompressed for 31 days in a hypobaric chamber to the barometric equivalent of Mt. Everest (8,848 m). Maximal exercise was performed with and without plasma volume expansion (PVX, 219-292 ml) during exercise, at sea level (SL), at HA (370 mmHg, equivalent to 6, 000 m after 10-12 days) and after return to SL (RSL, 1-3 days). Plasma volume (PV) was determined at rest at SL, HA, and RSL by Evans blue dilution. PV was decreased by 26% (P < 0.01) at HA and was 10% higher at RSL than at SL. Exercise-induced DeltaPV was reduced both by PVX and HA (P < 0.05). Compared with SL, VO(2)(max) was decreased by 58 and 11% at HA and RSL, respectively. VO(2)(max) was enhanced by PVX at HA (+9%, P < 0.05) but not at SL or RSL. The more PV was decreased at HA, the more VO(2)(max) was improved by PVX (P < 0.05). At exhaustion, plasma renin and aldosterone were not modified at HA compared with SL but were higher at RSL, whereas plasma atrial natriuretic factor was lower at HA. The present results suggest that PV contributes to the limitation of VO(2)(max) during acclimatization to HA. RSL-induced PVX, which may be due to increased activity of the renin-aldosterone system, could also influence the recovery of VO(2)(max).  相似文献   

14.
We have synthesised the complex [Pt(CH(3)SCH(2)CH(2)SCH(3))(5'-GMP-N7)(2)].6H(2)O (1), where 5'-GMP is 5'-guanosine monophosphate, and determined its X-ray crystal structure. Pt(II) adopts a square-planar geometry in which the bases are coordinated head-to-tail (HT) in the Delta configuration. The nucleotide conformation in this complex is almost identical to that in the previously reported complex [Pt(en)(5'-GMP-N7)(2)].9H(2)O (2), in which there is outer sphere macrochelation via intramolecular H-bonding between the monoanionic phosphate groups and the coordinated ethylenediamine (en) NH. It is therefore apparent that intermolecular interactions rather than intramolecular H-bonding determines the orientation of the sugar-phosphate side-chain in these Pt(II) bisnucleotide complexes in the solid state.  相似文献   

15.
Reactions of Cd(NO(3))(2) with the model nucleobases 9-alkylguanine in water at neutral pH, give the compounds trans-[Cd(9-RGH-N7)(2)(H(2)O)(4)](NO(3))(2)(R=Me, Et), with the 9-alkylguanine ligands bound to the metal cation at the N(7) position. The X-ray structures of both compounds are reported. The six-coordinate Cd(II) complexes consist of a highly regular octahedral geometry in which the two 9-alkylguanine ligands are in a trans position to each other and approximately collinear with the metal cation. In addition, the networks of both compounds show interesting features. Thus, intramolecular H-bonds between O(6) and a coordinated water molecule are present, and self-association of guanines via H-bonding of N(3)-H...N(2) take place, leading to a 1D supramolecular polymeric ribbon. Density functional theory calculations have been applied to both compounds in order to study the stability of N(7) metalated guanine-guanine associations by comparing experimental and theoretical results. The potential relevance with regard to possible Cd(II)-DNA cross-links is briefly discussed.  相似文献   

16.
Two new diMn(III) complexes [Mn(2)(III)L(1)(mu-AcO)(mu-MeO)(methanol)(2)]Br (1) and [Mn(2)(III)L(2)(mu-AcO)(mu-MeO)(methanol)(ClO(4))] (2) (L(1)H(3)=1,5-bis(2-hydroxybenzophenylideneamino)pentan-3-ol; L(2)H(3)=1,5-bis(2-hydroxynaphtylideneamino)pentan-3-ol) were synthesized and structurally characterized. Structural studies evidence that these complexes have a bis(mu-alkoxo)(mu-carboxylato) triply bridged diMn(III) core in the solid state and in solution, with two substitution-labile sites--one on each Mn ion--in cis-position. The two complexes show catalytic activity toward disproportionation of H(2)O(2), with saturation kinetics on [H(2)O(2)], in methanol and dimethyl formamide at 25 degrees C. Spectroscopic monitoring of the H(2)O(2) disproportionation reaction suggests that (i) complexes 1 and 2 dismutate H(2)O(2) by a mechanism involving redox cycling between Mn(2)(III) and Mn(2)(IV), (ii) the complexes retain the dinuclearity during catalysis, (iii) the active form of the catalyst contains bound acetate, and (iv) protons favors the formation of inactive Mn(II) species. Comparison to other dimanganese complexes of the same family shows that the rate of catalase reaction is not critically dependent on the redox potential of the catalyst, that substitution of phenolate by naphtolate in the Schiff base ligand favors formation of the catalyst-substrate adduct, and that, in the non-protic solvent, the bulkier substituent at the imine proton position hampers the binding to the substrate.  相似文献   

17.
Synthesis and crystal structure of two Zn(II) dimer complexes with 1-methylcytosine (1-MeC) are reported. In complex [Zn(2)Cl(4)(mu-1-MeC-O2,N3)(2)] (1), two 1-MeC ligands are bridging two ZnCl(2) moieties. In [Zn(2)(1-MeC-N3)(4)(mu-SO(4))(2)].2H(2)O (2), the sulfates act as bridging ligands and 1-MeC are linked via N3 to Zn(II) as terminal ligands. Both complexes represent the first examples of Zn(II)-pyrimidine dimers. The potential biological significance of 1 and 2 is discussed.  相似文献   

18.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(phen)(2)(dpta)](3+) and [Co(phen)(2)(amtp)](3+) (phen=1,10-phenanthroline, dpta=dipyrido-[3,2-a;2',3'-c]- thien-[3,4-c]azine, amtp=3-amino-1,2,4-triazino[5,6-f]1,10-phenanthroline) have been synthesized and characterized. The interaction of these complexes with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, these Co(III) complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365nm. The mechanism studies reveal that hydroxyl radical (OH()) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(phen)(2)(dpta)](3+) and superoxide anion radical (O(2)(-)) acts as the key role in the cleavage reaction of plasmid DNA by [Co(phen)(2)(amtp)](3+).  相似文献   

19.
20.
Two novel tridentate ligands, 2-(2-benzimidazole)-1,10-phenanthroline (PHBI) and 2-(2-naphthoimidazole)-1,10-phenanthroline (PHNI), and their heteroleptic complexes [Ru(tpy)(PHBI)](ClO(4))(2).2H(2)O (1) and [Ru(tpy)(PHNI)](ClO(4))(2).H(2)O (2) (tpy=2,2':6',2"-terpyridyl) have been synthesized and characterized by elemental analysis, mass spectra, 1H NMR, and electronic spectroscopy. The electrochemical behaviors of the two novel complexes were studied by cyclic voltammetry. The DNA-binding properties of the two complexes were investigated by spectroscopic methods and viscosity measurements. The results indicated that the two complexes interact with DNA in different binding modes. Complex 1 may bind to DNA via electrostatic interaction, while complex 2 binds to DNA by partial intercalation via the extended naphthyl ring into the base pairs of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号