首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
When Streptococcus faecalis was grown in the presence of protonophores , an ATPase activity of the membrane was increased at a pH below 8.0 but not at a pH above 8.0. Characteristics of this increased ATPase were identical to those of a proton-translocating ATPase (H+-ATPase) located on the membrane of normal cells. The cytoplasmic pH was regulated at 7.6 to 7.8 but was not regulated in the presence of protonophores . The increase in the H+-ATPase was observed when the cytoplasmic pH was lowered to less than 7.6 by the addition of protonophores and was not related to the dissipation of the proton motive force. Thus, we suggest that the H+-ATPase of the membrane is amplified when the cytoplasmic pH is lowered below the pH at which it is regulated under normal conditions.  相似文献   

2.
The Streptococcus faecalis H+-ATPase (F1 X F0 complex) level was elevated when the cytoplasmic pH was shifted below 7.5. The elevated level was attained by the increase in functional unit (F1 X F0 complex) in membranes, but not by the activation of the enzyme. Our data strongly suggested that the increase in enzyme arises from stimulation of enzyme biosynthesis. When calls growing at pH 7.6 were transferred to an acid medium with a pH below 7, the amount of H+-ATPase increased. The amount of H+-ATPase decreased to the basal level when the medium was alkalized again. Cytoplasmic pH was not controlled normally in cells where a change in the amount of H+-ATPase was inhibited. Based on these findings and previous data (Kobayashi, H. (1985) J. Biol. Chem. 260, 72-76), we propose a model for the regulatory mechanism of streptococcal cytoplasmic pH: the pH is regulated by changes in amount and activity of the H+-ATPase, which are dependent on the cytoplasmic pH.  相似文献   

3.
In Streptococcus faecalis (faecium), the cytoplasmic pH is regulated by proton extrusion via a proton translocating F1F0-ATPase; the level of this enzyme increases in response to cytoplasmic acidification (Kobayashi, H., Suzuki, T., and Unemoto, T. (1986) J. Biol. Chem. 261, 627-630). We describe here two novel acid-sensitive mutants, designated AS8 and AS17, that contain ATPase activity but fail to grow on acid media. Our data suggested that in mutant AS17, acidification of the cytoplasm stimulates synthesis of the F0 sector of the ATPase but not the F1 sector. The accumulation in the plasma membrane of F0 sectors devoid of F1 results in enhanced proton permeability, and as a consequence mutant AS17 is unable to regulate the cytoplasmic pH in acid media. The genetic defect may reside in a gene that regulates expression of the F1F0-ATPase. Mutant AS8 does not generate a proton motive force. Our results suggest that the F1F0-ATPase can hydrolyze ATP but fails to translocate protons due to a defect in one of the subunits of the F0 sector.  相似文献   

4.
Amplification of the Na+-ATPase of Streptococcus faecalis at alkaline pH   总被引:1,自引:0,他引:1  
Y Kakinuma  K Igarashi 《FEBS letters》1990,261(1):135-138
The Na+-ATPase activity of Streptococcus faecalis was influenced by the medium pH. Activities of the protonophore-resistant Na+ extrusion and the KtrII (active K+ uptake by the Na+-ATPase) were maximal in the cells grown at pH 9.5, and were minimal in those grown at pH 6.0. In the cells grown at pH 7.5, they were moderately observed. The Na+-stimulated ATPase activity of the cells grown at pH 9.5 was about 4-fold higher than that of the cells grown at pH 6.0. Thus, amplification of the Na+-ATPase is remarkable at alkaline pH in this organism, possibly by an increase of the cytoplasmic Na+ level as a signal.  相似文献   

5.
The K+/H+ antiporter of a marine bacterium, Vibrio alginolyticus, is strongly dependent upon the cytoplasmic pH and functions only at an internal pH above 7.7. In alkaline buffer with an outwardly directed chemical gradient of K+ (delta pK), the internal pH was maintained at about 7.7. Addition of N-ethylmaleimide (NEM) released cellular K+ and acidified the cytosol below pH 7.7. The NEM effect was reversed by the addition of 2-mercaptoethanol: K+ efflux ceased, and the internal pH returned to about 7.7. In acidic buffer, the internal pH was also regulated at about 7.6 even in the absence of delta pK. Following addition of NEM, the internal pH decreased below 7.6, dissipating delta pH. These results suggest that NEM desensitizes the pH-dependence of the K+/H+ antiporter, allowing the antiporter to function at an internal pH below 7.7.  相似文献   

6.
Potassium extrusion in bacteria is thought to play a role in the regulation of the cytoplasmic pH; in several organisms, it has been ascribed to secondary antiport of K+ for protons. Streptococcus faecalis exhibited a distinctive pattern: potassium extrusion occurred only when the cytoplasmic pH was alkaline and required the generation of ATP. The key observation is that glycolyzing cells suspended in an alkaline medium extruded K+, even against a K+ concentration gradient, provided the medium contained a weak permeant base (e.g. diethanolamine or methylamine). The amines render the cytoplasmic pH alkaline; when conditions were arranged to keep the cytoplasm neutral, no K+ extrusion was seen. Potassium extrusion required the presence of either glucose or arginine and was unaffected by protonophores and by inhibition of the F1Fo-ATPase. When the medium contained [14C]methylamine, the cells accumulated the base to an extent stoichiometrically equivalent to the K+ lost. Concurrently, the cytoplasmic pH fell from 8.8 to 7.6, at which point K+ extrusion ceased. The results suggest that K+ extrusion is due to an ATP-driven transport system that expels K+ by exchange for H+ and is active only at alkaline cytoplasmic pH.  相似文献   

7.
The marine bacterium, Vibrio alginolyticus, regulates the cytoplasmic pH at about 7.8 over the pH range 6.0-9.0. By the addition of diethanolamine (a membrane-permeable amine) at pH 9.0, the internal pH was alkalized and simultaneously the cellular K+ was released. Following the K+ exit, the internal pH was acidified until 7.8, where the K+ exit leveled off. The K+ exit was mediated by a K+/H+ antiporter that is driven by the outwardly directed K+ gradient and ceases to function at the internal pH of 7.8 and below. The Na+-loaded cells assayed in the absence of KCl generated inside acidic delta pH at alkaline pH due to the function of an Na+/H+ antiporter, but the internal pH was not maintained at a constant value. At acidic pH range, the addition of KCl to the external medium was necessary for the alkalization of cell interior. These results suggested that in cooperation with the K+ uptake system and H+ pumps, the K+/H+ antiporter functions as a regulator of cytoplasmic pH to maintain a constant value of 7.8 over the pH range 6.0-9.0.  相似文献   

8.
We have isolated two acid-sensitive mutants of Streptococcus faecalis (ATCC 9790), designated AS13 and AS25, which grew at pH 7.5 but not at pH below 6.0. The ionophore gramicidin D, which collapsed the pH gradient between the cytoplasm and the medium, had little effect on the growth of these mutants, indicating that growing cells maintain only a small pH gradient. In the presence of gramicidin D the growth rates of the parent and mutant strains were identical over a range of pH values. When glucose was added to a cell suspension at pH 6.4, the parent strain generated a pH gradient of 1.0 unit, interior alkaline; AS13 generated a pH gradient of only 0.5 units, and AS25 generated no measurable pH gradient. The proton permeability of the mutant strains was the same as that of the parent strain. These results suggest that a cytoplasmic pH of around 7.5 is required for the growth of the cells and that the mutant strains are unable to establish a neutral cytoplasmic pH in acidic medium because of damage to the regulatory system of the cytoplasmic pH. Mutant strains also have a reduced capacity to extrude protons and take up potassium. Therefore, it is likely that these cation transport systems are involved in the regulation of cytoplasmic pH.  相似文献   

9.
The marine bacterium Vibrio alginolyticus, containing 470 mM-K+ and 70 mM-Na+ inside its cells, was able to regulate the cytoplasmic pH (pH(in)) in the narrow range 7.6-7.8 over the external pH (pH(out)) range 6.0-9.0 in the presence of 400 mM-Na+ and 10 mM-K+. In the absence of external K+, however, pHin was regulated only at alkaline pH(out) values above 7.6. When the cells were incubated in the presence of unusually high K+ (400 mM) and 4 mM Na+, the pH(in) was regulated only at acidic pH(out) values below 7.6. These results could be explained by postulating a K+/H+ antiporter as the regulator of pH(in) over the pH(out) range 6.0-9.0. When Na(+)-loaded/K(+)-depleted cells were incubated in 400 mM-Na+ in the absence of K+, an inside acidic delta pH was generated at pH(out) values above 7.0. After addition of diethanolamine the inside acidic delta pH collapsed transiently and then returned to the original value concomitant with the extrusion of Na+, suggesting the participation of a Na+/H+ antiporter for the generation of an inside acidic delta pH. In the presence of 400 mM-K+, at least 5 mM-Na+ was required to support cell growth at pH(out) below 7.5. An increase in Na+ concentration allowed the cells to grow at a more alkaline pH(out). Furthermore, cells containing more Na+ inside could more easily adapt to grow at alkaline pH(out). These results indicated the importance of Na+ in acidification of the cell interior via a Na+/H+ antiporter in order to support cell growth at alkaline pH(out) under conditions where the activity of a K+/H+ antiporter is marginal.  相似文献   

10.
M Kitada  K Onda    K Horikoshi 《Journal of bacteriology》1989,171(4):1879-1884
The pH homeostasis and the sodium/proton antiport system have been studied in the newly isolated alkalophilic Bacillus sp. strain N-6, which could grow on media in a pH range from 7 to 10, and in its nonalkalophilic mutant. After a quick shift in external pH from 8 to 10 by the addition of Na2CO3, the delta pH (inside acid) in the cells of strain N-6 was immediately established, and the pH homeostatic state was maintained for more than 20 min in an alkaline environment. However, under the same conditions, the pH homeostasis was not observed in the cells of nonalkalophilic mutant, and the cytoplasmic pH immediately rose to pH 10. On the other hand, the results of the rapid acidification from pH 9 to 7 showed that the internal pH was maintained as more basic than the external pH in a neutral medium in both strains. The Na+/H+ antiport system has been characterized by either the effect of Na+ on delta pH formation or 22Na+ efflux in Na+-loaded right-side-out membrane vesicles of strain N-6. Na+- or Li+-loaded vesicles exhibited a reversed delta pH (inside acid) after the addition of electron donors (ascorbate plus tetramethyl-p-phenylenediamine) at both pH 7 and 9, whereas choline-loaded vesicles generated delta pHs of the conventional orientation (inside alkaline). 22Na+ was actively extruded from 22Na+-loaded vesicles whose potential was negative at pH 7 and 9. The inclusion of carbonyl cyanide m-chlorophenylhydrazone inhibited 22Na+ efflux in the presence of electron donors. These results indicate that the Na+/H+ antiport system in this strain operates electrogenically over a range of external pHs from 7 to 10 and plays a role in pH homeostasis at the alkaline pH range. The pH homeostasis at neutral ph was studied in more detail. K+ -depleted cells showed no delta pH (acid out) in the neutral conditions in the absence of K+, whereas these cells generated a delta pH if K+ was present in the medium. This increase of internal pH was accompanied by K+ uptake from the medium. These results suggest that electrogenic K+ entry allows extrusion of H+ from cells by the primary proton pump at neutral pH.  相似文献   

11.
A Na+/H+ antiporter catalyses coupled Na+ extrusion and H+ uptake across the membranes of extremely alkalophilic bacilli. This exchange is electrogenic, with H+ translocated inward greater than Na+ extruded. It is energized by the delta chi 2 component of the delta mu H+ that is established during primary proton pumping by the alkalophile respiratory chain complexes. These complexes abound in the membranes of extreme alkalophiles. Combined activity of the respiratory chain, the antiporter, and solute transport systems that are coupled to Na+ re-entry, allow the alkalophiles to maintain a cytoplasmic pH that is several pH units more acidic than optimal external pH values for growth. There is no compelling evidence for a specific and necessary role for any ion other than sodium in pH homeostasis, and although there is very high cytoplasmic buffering capacity in the alkaline range, active mechanisms for pH homeostasis are crucial. Energization of the antiporter as well as the proton translocating F1F0-ATPase that catalyses ATP synthesis in the extreme alkalophiles must accommodate the problem of the low net delta mu H+ and the very low concentrations of protons, per se, in the external medium. This problem is by-passed by other bioenergetic work functions, such as solute uptake or motility, that utilize sodium ions for energy-coupling in the place of protons.  相似文献   

12.
The petal color of morning glory, Ipomoea tricolor cv. Heavenly Blue, changes from purplish red to blue during flower opening. This color change is caused by an unusual increase in vacuolar pH from 6.6 to 7.7 in the colored adaxial and abaxial cells. To clarify the mechanism underlying the alkalization of epidermal vacuoles in the open petals, we focused on vacuolar H+-ATPase (V-ATPase), H+-pyrophosphatase (V-PPase) and an isoform of Na+/H+ exchanger (NHX1). We isolated red and blue protoplasts from the petals in bud and fully open flower, respectively, and purified vacuolar membranes. The membranes contained V-ATPase, V-PPase and NHX1, which were immunochemically detected, with relatively high transport activity. NHX1 could be detected only in the vacuolar membranes prepared from flower petals and its protein level was the highest in the colored petal epidermis of the open flower. These results suggest that the increase of vacuolar pH in the petals during flower opening is due to active transport of Na+ and/or K+ from the cytosol into vacuoles through a sodium- or potassium-driven Na+(K+)/H+ exchanger NXH1 and that V-PPase and V-ATPase may prevent the over-alkalization. This systematic ion transport maintains the weakly alkaline vacuolar pH, producing the sky-blue petals.  相似文献   

13.
We isolated an Enterococcus hirae (formerly Streptococcus faecalis) mutant, designated MS117, in which ‘G’ at position 301 of the alpha-subunit gene of the F1F0 type of H+-ATPase was deleted. MS117 had low H+-ATPase activity, was deficient in the regulatory system of cytoplasmic pH, and was unable to grow at pH6.0. When the alpha-subunit gene of E. hirae H+-ATPase was ligated with the shuttle vector pHY300PLK at the downstream region of the tet gene of the vector, it was expressed without its own promoter in MS117, and the mutation of MS117 was complemented; the mutant harbouring the plasmid had the ability to maintain a neutral cytoplasm and grew at pH6.0. We next transformed MS117 with pHY300PLK containing the alpha-subunit gene of Bacillus megaterium F1F0-ATPase constructed in the same way. The transformant grew at pH 6.0, and the ATP hydrolysis activity was recovered. These results suggested that an active hybrid H+-ATPase containing the B. megaterium alpha subunit was produced, and that the hybrid enzyme regulated the enterococcal cytoplasmic pH, although the function of the B. megaterium enzyme did not include pH regulation. Thus, our present results support the previous proposal that the enterococcal cytoplasmic pH is regulated by the F1F0 type of H+-ATPase.  相似文献   

14.
The role of external Ca2+ in the homeostasis of intracellular pH (pHi) of Anabaena sp. strain PCC7120 in response to a decrease in the external pH (pHex) has been studied in cell suspensions. Increase in cytoplasmic pH after acid shock is dependent on the presence of Ca2+ in the medium. The observed Ca2+-mediated alkalization of the cytoplasm depends on the extent of the shift in external pH. Acid pH shifts resulted in an increased permeability of the cytoplasmic membrane to protons, which could be reversed by increasing the concentration of Ca2+ in the medium. Thus, the ability of Ca2+ to increase cytoplasmic pH might be correlated with an inhibition of net proton uptake by increasing concentrations of external Ca2+ under these conditions. This combined response resulted in the generation and maintenance of a larger pH gradient (ΔpH) at acid external pH values. All Ca2+ channel blockers tested, such as verapamil and LaCl3, inhibited the observed Ca2+-mediated response. On the other hand, the Ca ionophore calcimycin (compound A23187) was agonistic, and stimulated both cytoplasmic alkalization and inhibition of net proton uptake. The protonophorous uncoupler carbonylcyanide m -chlorophenyl hydrazone, inhibited this Ca2+-mediated response, whereas monensin, an inhibitor of the Na+/H+ antiporter, had no significant effect. The results of the present study suggest that an influx of Ca2+ from the extracellular space is required for the regulation of cytoplasmic pH in Anabaena sp. strain PCC7120 exposed to low external pH values.  相似文献   

15.
Generation of electric (delta psi) and chemical (delta pH) components of electrochemical proton gradient delta muH+, in plasma membrane vesicles of Heracleum sosnovskyi phloem cells was investigated. ATP-dependent generation of delta psi at pH 6.0 in the presence of Mg2+ and K+ was established with the help of fluorescent probes AU+ and ANS-. Protonophore CCCP and proton ATPase inhibitor DCCD suppressed generation, whereas oligomycin, the inhibitor of mitochondrial ATPases did not affect it. Measurings of delta psi value indicated its oscillations within the limits from 10 to 60 mV. ATP-dependent generation of delta pH was established by means of fluorescent probe 9-AA. The effect was eliminated by CCCP and stimulated by K+, that may testify to the transformation of a part of delta psi into delta pH at antiport H+/K+. Existence of H+-ATPase in the plasma membranes of higher plant cells insuring generation of delta muH+ is supposed.  相似文献   

16.
《Biofizika》2005,50(4):680-683
It was shown that the proton conductivity of Enterococcus hirae ATCC9790 membrane increases three times as pH of the growth medium decreases from 8.5 to 5.5. The changes in proton conductivity are interrelated to the values of membrane and redox potentials of the cell, which in turn vary depending on the pH value of growth medium. The energy-dependent H+ efflux for cells fermenting sugar (the glucose) decreases 1.5 times as pH decreases from 8.5 to 5.5; in this case, the N,N'-dicyclohexylcarbodiimide at lower pH values suppresses the H+ efflux more intensively than at higher pH values, the H+ efflux nonsensitive to N,N'-dicyclohexylcarbodiimide being practically unchanged. The H+ efflux in the ATPase mutant MS116 is significantly (approximately 3 times) lower than that in the precursor strain and does not depend on pH. The results show that the proton conductivity of the membrane of this bacterium depends on pH of the growth medium. It is possible that the energy-dependent H+ efflux through F1F0-ATPase is interrelated with membrane proton conductivity.  相似文献   

17.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

18.
In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.  相似文献   

19.
Earlier work from this laboratory led to the proposal that the cytoplasmic pH of streptococcal cells is regulated solely by changes in the amount and activity of a proton-translocating ATPase, F1F0 complex [Kobayashi, H., Suzuki, T. & Unemoto, T. (1986) J. Biol. Chem. 261, 627-630]. We have now examined the proposal with the aid of computer simulation. We find that an increase in the amount of the H+-ATPase is necessary for pH regulation and is sufficient to maintain a constant steady-state cytoplasmic pH. An increase in H+-ATPase activity is insufficient by itself to maintain a constant cytoplasmic pH, but suppresses the initial fluctuation of the pH. When both variations were allowed, the simulated cytoplasmic pH remained constant despite large perturbations, suggesting that this regulatory system has ample capacity to compensate for pH changes. The present work shows that a computer simulation is a useful way to examine a model for biological regulatory system; application of the simulation to other regulatory systems is discussed.  相似文献   

20.
Summary The distribution of Mg+ +-ATPase in osteoclasts along the endosteal surface of the chick tibia was investigated by neutral and alkaline pH cytochemical methods at the electron-microscopic level. Reaction product was observed in mitochondria, cytoplasmic vesicles, and ruffled-border membrane. Levamisole, ouabain, and vanadate did not affect the enzymatic activity. Para-chloromercuribenzoic acid (PCMB) prevented staining of mitochondria, ruffled border, and most cytoplasmic vesicles. Tri-n-butyltin decreased the amount of reaction product in cytoplasmic vesicles and ruffled-border membrane, but did not inhibit reaction product formation within mitochondria. Duramycin, which is a potent inhibitor for proton-pump ATPase, blocked reaction-product formation along the ruffled-border membrane, in mitochondria, and in cytoplasmic vesicles at alkaline pH, but not at neutral pH. It is concluded that the alkaline pH method for Mg+ +-ATPase appears to demonstrate sites of proton-pump ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号