首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized. In uxs1 and b3gat3 mutant larvae, biosynthesis of CS was shown to be virtually abolished, whereas these mutants still were capable of synthesizing 50% of the HS produced in control larvae. extl3 and ext2 mutants on the other hand were shown to synthesize reduced amounts of hypersulfated HS. Further, extl3 mutants produced higher levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies in the single mutant strains, as well as in ext2;uxs1 double mutants, was conducted. A correlation between HS and CS production and phenotypes was found, such that impaired HS biosynthesis was shown to affect chondrocyte intercalation, whereas impaired CS biosynthesis inhibited formation of the extracellular matrix surrounding chondrocytes.  相似文献   

2.
Heparan sulfate (HS) proteoglycans, at the cell surface and extracellular matrix, facilitate ligand-receptor interactions crucial to many physiological processes. The distinct sulfation patterns of HS sugar chains presented by their protein core are key to HS proteoglycan activity. Tight regulation of several Golgi complex enzyme families is crucial to produce complex tissue-specific HS sequences. Several in vivo models deficient in HS biosynthesis enzymes demonstrate that developmental abnormalities result from modified HS structure. This review will discuss the plasticity of sulfation requirements on HS for activating protein ligands, which might reflect a flexible HS biosynthetic mechanism. In addition, the latest discovery of HS acting enzymes, the Sulfs, responsible for extracellular tweaking of HS sulfation levels subsequent to biosynthesis will be considered.  相似文献   

3.
Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.  相似文献   

4.
Embryonic stem (ES) cells are derived from the inner cell mass of the blastocyst and can give rise to all cell types in the body. The fate of ES cells depends on the signals they receive from their surrounding environment, which either promote self-renewal or initiate differentiation. Heparan sulfate proteoglycans are macromolecules found on the cell surface and in the extracellular matrix. Acting as low-affinity receptors on the cell surface, heparan sulfate (HS) side chains modulate the functions of numerous growth factors and morphogens, having wide impact on the extracellular information received by cells. ES cells lacking HS fail to differentiate but can be induced to do so by adding heparin. ES cells defective in various components of the HS biosynthesis machinery, thus expressing differently flawed HS, exhibit lineage-specific effects. Here we discuss recent studies on the biological functions of HS in ES cell developmental processes. Since ES cells have significant potential applications in tissue/cell engineering for cell replacement therapies, understanding the functional mechanisms of HS in manipulating ES cell growth in vitro is of utmost importance, if the stem cell regenerative medicine from scientific fiction ever will be made real.  相似文献   

5.
Divalent cations, such as Mg2+, Ba2+, and Co2+, are known to mimic the effects of Ca2+ in parathyroid cells, but it is not clear whether the mechanism of their action is the same as that of Ca2+. We have shown that extracellular Ca2+ concentration ([Ca2+]e) regulates the distribution and recycling of cell-surface heparan sulfate (HS) proteoglycans in a rat parathyroid cell line; at normal to high [Ca2+]e (e.g., 2 mM) HS proteoglycans are primarily localized intracellularly, while at low [Ca2+]e (0.05 mM) they are translocated to the cell surface and rapidly recycle (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C., 1990, J. Biol. Chem. 265, 13661-13668). We now show that a high concentration of Mg2+ (8 mM) reduces the amount of recycling HS proteoglycans in low [Ca2+]e. However, the primary effects of high Ca2+ and high Mg2+ on the recycling HS proteoglycans are different. High [Ca2+]e causes translocation of HS proteoglycans to intracellular compartments, while high Mg2+ stimulates cleavage of their core proteins and subsequent shedding of HS proteoglycans into the medium, thereby depleting the recycling molecules. However, high Mg2+ does not induce shedding of HS proteoglycans in high [Ca2+]e. The effects of Ba2+ and Co2+ were similar to those of Mg2+, but Sr2+ showed no significant effects on HS proteoglycan translocation. Otherwise, 8 mM Mg2+ did not alter biosynthesis or intracellular catabolism of HS proteoglycans. These observations suggest that the recycling of HS proteoglycans in parathyroid cells is sensitive only to [Ca2+]e, whereas several other divalent cations can deplete the recycling HS proteoglycans by a distinctly different mechanism. Thus, the mechanism by which Ca2+ regulates the amounts of the recycling HS proteoglycans may be more physiological and play a functional role in parathyroid cells.  相似文献   

6.
Heparan sulfate (HS) proteoglycans are crucial to numerous biological processes and pathological conditions, but to date only a few HS structures have been synthesized and characterized with regard to structure-function relationships. Because HS proteoglycans are highly diverse in structure, there are substantial limitations on their synthesis by classical chemical means, and thus new methods to rapidly assemble bioactive HS structures are needed. Here we report the biosynthesis of bioactive HS oligosaccharides using an engineered set of cloned enzymes that mimics the Golgi apparatus in vitro. We rapidly and efficiently assembled the antithrombin III-binding pentasaccharide in just 6 steps, in contrast to the approximately 60 steps needed for its chemical synthesis, with an overall yield at least twofold greater and a completion time at least 100 times faster than for the chemical process.  相似文献   

7.
The regulation of the cellular distribution of proteoglycans in a clonal rat parathyroid cell line by extracellular Ca2+ concentrations ([Ca2+]e) was studied. Proteoglycans synthesized by the cells metabolically labeled with [35S]sulfate have been shown to be almost exclusively heparan sulfate (HS) proteoglycans (Yanagishita, M., Brandi, M.L., and Sakaguchi, K. (1989) J. Biol. Chem. 264, 15714-15720), which are generally associated with the plasma membrane. The proportion of HS proteoglycans on the cell surface was approximately 20% in 2.1 mM (high) [Ca2+]e, whereas it increased to 50-60% in 0.05 mM (low) [Ca2+]e. Cell-associated HS proteoglycans redistribute in response to changing [Ca2+]e with a t 1/2 less than 4 min; HS proteoglycans appear on the cell surface as [Ca2+]e decreases and disappear from the cell surface as [Ca2+]e increases. Further, HS proteoglycans on the cell surface recycle to and from an intracellular compartment approximately 10 times before their degradation in low [Ca2+]e but do not recycle in high [Ca2+]e. The distribution of newly synthesized HS proteoglycans is regulated by [Ca2+]e but is independent of [Ca2+]e during biosynthesis. In low [Ca2+]e, at least 50% of the HS proteoglycans pulse-labeled for 10 min are transported from the Golgi complex to the cell surface or to the recycling compartment with a t 1/2 of approximately 20 min. Another approximately 10% appear on the cell surface in either low or high [Ca2+]e in a compartment with a long half-life. Addition of Mg2+ or Ba2+ to the low [Ca2+]e cultures had little effect on the distribution of HS proteoglycans. These observations suggest that [Ca2+]e specifically regulates the distribution and recycling of cell-associated HS proteoglycans in the parathyroid cells.  相似文献   

8.
HS (heparan sulfate) has been shown to be an important mediator of Plasmodium sporozoite homing and invasion of the liver, but the role of this glycosaminoglycan in mosquito vector host-sporozoite interactions is unknown. We have biochemically characterized the function of AgOXT1 (Anopheles gambiae peptide-O-xylosyltransferase 1) and confirmed that AgOXT1 can modify peptides representing model HS and chondroitin sulfate proteoglycans in vitro. Moreover, we also demonstrated that the mosquito salivary gland basal lamina proteoglycans are modified by HS. We used RNA interference-mediated knockdown of HS biosynthesis in A. gambiae salivary glands to determine whether Plasmodium falciparum sporozoites that are released from mosquito midgut oocysts use salivary gland HS as a receptor for tissue invasion. Our results suggest that salivary gland basal lamina HS glycosaminoglycans only partially mediate midgut sporozoite invasion of this tissue, and that in the absence of HS, the presence of other surface co-receptors is sufficient to facilitate parasite entry.  相似文献   

9.
The structure, biosynthesis, and distribution of cell-associated proteoglycans in a clonal line of parathyroid cells, which exhibit differentiated characteristics such as calcium-regulated hormone secretion and cell growth, were studied by metabolic labeling with [3H] glucosamine and [35S]sulfate as precursors. Proteoglycans were isolated by two consecutive ion exchange chromatography steps and then analyzed by gel filtration, polyacrylamide gel electrophoresis, and specific enzyme and chemical reactions. The cells synthesize almost exclusively (greater than 95%) heparan sulfate (HS) proteoglycans with a glycosaminoglycan synthesis rate of approximately 0.5 micrograms/10(6) cells/24 h. Two major HS proteoglycan species were identified. HS proteoglycan-I has a mass of approximately kDa with a single HS chain (approximately 12 kDa) and a core protein of approximately 150 kDa including oligosaccharides. HS proteoglycan-II has a mass of approximately 170 kDa with 3-4 HS chains (approximately 30 kDa) and a core protein of 70-80 kDa including oligosaccharides. In the medium with low ionized calcium (0.05 mM), HS proteoglycan-I is synthesized at approximately 1.6 times the rate and HS proteoglycan-II at a similar rate as for cells cultured in the medium with high ionized calcium (2.1 mM). The distribution of proteoglycans, examined by the accessibility of the molecules to trypsin, was dramatically influenced by environmental calcium concentration; at low calcium levels 70-80% of the HS proteoglycans are trypsin-accessible while only 20-30% are accessible at high calcium levels. This suggests that the proteoglycans are primarily on the cell surface in low calcium and in trypsin-inaccessible compartments in high calcium conditions.  相似文献   

10.
Heparan sulfate proteoglycans are important modulators of growth factor signaling in a variety of patterning processes. Secreted growth factors that play critical roles in angiogenesis bind to heparan sulfate, and this association is affected by 6-O-sulfation of the heparan sulfate chains. Addition of 6-O-sulfate is catalyzed by a family of sulfotransferases (HS6STs), and genetic manipulation of their function permits an assessment of their contribution to vascular assembly. We report on the biochemical activity and expression patterns of two zebrafish HS6ST genes. In situ hybridization reveals dynamic and distinct expression patterns of these two genes during development. Structural analysis of heparan sulfate from wild-type and morpholino antisense 'knockdown' embryos suggests that HS6ST-1 and HS6ST-2 have similar biochemical activity. HS6ST-2, but not HS6ST-1, morphants exhibit abnormalities in the branching morphogenesis of the caudal vein during embryonic development of the zebrafish. Our finding that HS6ST-2 is required for the branching morphogenesis of the caudal vein is the first in vivo evidence for an essential role of a gene encoding a heparan sulfate modifying enzyme in vertebrate angiogenesis. Our analysis of two zebrafish HS6ST genes suggests that a wide range of biological processes may be regulated by an array of sulfation-modifying enzymes in the vertebrate genome.  相似文献   

11.
Tat, the transactivator protein of human immunodeficiency virus-1, has the unusual capacity of being internalized by cells when present in the extracellular milieu. This property can be exploited for the cellular delivery of heterologous proteins fused to Tat both in cell culture and in living animals. Here we provide genetic and biochemical evidence that cell membrane heparan sulfate (HS) proteoglycans act as receptors for extracellular Tat uptake. Cells genetically defective in the biosynthesis of fully sulfated HS are selectively impaired in the internalization of recombinant Tat fused to the green fluorescent protein, as evaluated by both flow cytometry and functional assays. In wild type cells, Tat uptake is competitively inhibited by soluble heparin and by treatment with glycosaminoglycan lyases specifically degrading HS chains. Cell surface HS proteoglycans also mediate physiological internalization of Tat green fluorescent protein released from neighboring producing cells. In contrast to extracellular Tat uptake, both wild type cells and cells genetically impaired in proteoglycan synthesis are equally proficient in the extracellular release of Tat, thus indicating that proteoglycans are not required for this process. The ubiquitous distribution of HS proteoglycans is consistent with the efficient intracellular delivery of heterologous proteins fused with Tat to different mammalian cell types.  相似文献   

12.
Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential.  相似文献   

13.
Chondroitin/dermatan sulfate (CS/DS) proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS). Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.  相似文献   

14.
Heparan sulfate (HS) proteoglycans are ubiquitous components of the extracellular matrix and plasma membrane of metazoans. The sulfation pattern of the HS glycosaminoglycan chain is characteristic for each tissue and changes during development. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes catalyze N-deacetylation and N-sulfation during HS biosynthesis and have a key role in designing the sulfation pattern. We here report on the presence of five NDST genes in zebrafish. Zebrafish ndst1a, ndst1b, ndst2a and ndst2b represent duplicated mammalian orthologues of NDST1 and NDST2 that arose through teleost specific genome duplication. Interestingly, the single zebrafish orthologue ndst3, is equally similar to tetrapod Ndst3 and Ndst4. It is likely that a local duplication in the common ancestor of lobe-finned fish and tetrapods gave rise to these two genes. All zebrafish Ndst genes showed distinct but partially overlapping expression patterns during embryonic development. Morpholino knockdown of ndst1b resulted in delayed development, craniofacial cartilage abnormalities, shortened body and pectoral fin length, resembling some of the features of the Ndst1 mouse knockout.  相似文献   

15.
Heparan sulphate (HS) acts as a multifunctional cell regulator, with specific sulphated saccharide sequences designed for selective interactions with many proteins. Functionally, these interactions result in regulation of the protein activities, and there is growing evidence that cells can dynamically alter the structure of HS sequences that they display. HS biosynthesis involves the action of a complex set of enzymes with polymerase, epimerase and sulphotransferase (ST) activities. In higher organisms, multiple isoforms of STs decorate the nascent HS chains with specific patterns of sulphation that confer selective biological functions. The study of HSSTs in model organisms provides a valuable opportunity to examine the expression of these enzymes in relation to the structure and activities of the HS produced. Here we describe that, in mice, there are stage-specific combinations of HSST isoenzymes that underlie the synthesis of different HS species at different times in the developing brain. This differential expression of HSSTs results in the synthesis of structurally variant HS species that form functional signalling complexes with specific fibroblast growth factors and their receptors. Regulated synthesis of specific HS species could be a mechanism for the regulation of proliferation and differentiation in the developing brain. We also describe evidence that a Caenorhabditis elegans orthologue of the mammalian 2OST enzyme, called HST-2, is essential for the normal development of this nematode. Together, these studies emphasize the importance of HSSTs in the biosynthesis of functionally variant HS proteoglycans, and demonstrate the importance of these complex regulatory molecules in developmental processes.  相似文献   

16.
The distribution of heparan sulfate (HS) proteoglycans in clonal rat parathyroid cells is regulated by the extracellular Ca2+ concentration, which is a principal factor for parathyroid cell function (Takeuchi, Y., Sakaguchi, K., Yanagishita, M., Aurbach, G. D., and Hascall, V. C. (1990) J. Biol. Chem. 265, 13661-13668). Increasing the concentration of extracellular Ca2+ in the physiological range redistributes HS proteoglycans from the cell surface to an intracellular compartment. We have now examined effects of the extracellular Ca2+ concentration on the metabolism of the HS proteoglycans in detail using [35S]sulfate metabolic labeling-chase experiments. Two distinct metabolic pathways were demonstrated: (i) the intracellular generation of HS chains from HS proteoglycans in prelysosomal compartments followed by their release into the medium (pathway 1), and (ii) intracellular generation of HS oligosaccharides from HS chains in prelysosomal compartments, which are eventually degraded into free sulfate in lysosomes (pathway 2). The HS oligosaccharides were exclusively present within the cells, whereas HS chains were found primarily in the medium. The cells do not internalize either HS proteoglycans or HS chains from the medium. These observations indicate that these two degradation pathways are independent. In addition to these pathways, approximately 15% of the HS proteoglycans were released into the medium as a proteoglycan form. Treatment of cells with chloroquine, a lysosomotropic agent, did not affect generation of HS chains but inhibited conversion of HS chains to HS oligosaccharides or to free sulfate and resulted in the release of HS chains from the cells. The drug did not affect metabolic pathway 1. The extracellular Ca2+ concentration did not alter these intracellular degradation pathways for HS proteoglycans in the parathyroid cells. Thus, extracellular Ca2+ appears to regulate only the distribution of HS proteoglycans between the cell surface and intracellular compartments, and the process of cycling between these compartments when extracellular Ca2+ is low.  相似文献   

17.
Heparan sulfates (HSs) are N- and O-sulfated polysaccharide components of proteoglycans, which are important constituents of the cell surface as well as the extracellular matrix. Heparin, with extensive clinical application as an anticoagulant, is a highly sulfated form of HS present within the granules of connective tissue type mast cells. The diverse functions of HS, which include the modulation of growth factor/cytokine activity, interaction with matrix proteins and binding of enzymes to cell surfaces, depend greatly on the presence of specific, high affinity regions on the chains. N-acetylglucosamine N-deacetylase/N-sulfotransferases, NDSTs, are an important group of enzymes in HS biosynthesis, initiating the sulfation of the polysaccharide chains and thus determining the generation of the high affinity sites. Here, we review the role of the four vertebrate NDSTs in HS biosynthesis as well as their regulated expression. The main emphasis is the phenotypes of mice lacking one or more of the NDSTs.  相似文献   

18.
The 6-O sulfation states of cell surface heparan sulfate proteoglycans (HSPGs) are dynamically regulated to control the growth and specification of embryonic progenitor lineages. However, mechanisms for regulation of HSPG sulfation have been unknown. Here, we report on the biochemical and Wnt signaling activities of QSulf1, a novel cell surface sulfatase. Biochemical studies establish that QSulf1 is a heparan sulfate (HS) 6-O endosulfatase with preference, in particular, toward trisulfated IdoA2S-GlcNS6S disaccharide units within HS chains. In cells, QSulf1 can function cell autonomously to remodel the sulfation of cell surface HS and promote Wnt signaling when localized either on the cell surface or in the Golgi apparatus. QSulf1 6-O desulfation reduces XWnt binding to heparin and HS chains of Glypican1, whereas heparin binds with high affinity to XWnt8 and inhibits Wnt signaling. CHO cells mutant for HS biosynthesis are defective in Wnt-dependent Frizzled receptor activation, establishing that HS is required for Frizzled receptor function. Together, these findings suggest a two-state "catch or present" model for QSulf1 regulation of Wnt signaling in which QSulf1 removes 6-O sulfates from HS chains to promote the formation of low affinity HS-Wnt complexes that can functionally interact with Frizzled receptors to initiate Wnt signal transduction.  相似文献   

19.
Heparan sulfate proteoglycans (HSPGs), expressed on the cell surface and in the extracellular matrix of most animal tissues, have essential functions in development and homeostasis, and have been implicated in several pathological conditions. The functions of HSPGs are mainly mediated through interactions of the heparan sulfate (HS) polysaccharide side chains with different protein ligands. The molecular structure of HS is highly diverse, expressed in a cell-type specific manner. The flexible yet controlled structure of HS is primarily generated through a strictly regulated biosynthesis process and is further modified post-synthetically, such as desulfation by endosulfatases and fragmentation by heparanase. Heparanase is an endo-glucuronidase expressed in all tissues. The enzyme has been found up-regulated in a number of pathological conditions, implying a role in diseases mainly through degradation of HS. Emerging evidence demonstrates important roles of HS and heparanase in inflammatory reactions, particularly in the regulation of leukocyte activation and extravasation. Neuroinflammation is a common feature of various central nervous system disorders, thus it is a great interest to understand the implications of HS and heparanase in neuroinflammation.  相似文献   

20.
Rat ovarian granulosa cells synthesize two distinct species of plasma membrane-intercalated heparan sulfate (HS) proteoglycans; glycosylphosphatidylinositol (GPI)-anchored and core protein-intercalated HS proteoglycans. Both species of HS proteoglycans are primarily localized on the plasma membrane. Cell surface localization of GPI-anchored and protein-intercalated HS proteoglycans can be determined by their accessibility to exogenously added phosphatidylinositol-specific phospholipase C (PI-PLC) and trypsin, respectively. Kinetic parameters for the processes involving their transfer from the Golgi to the cell surface, endocytosis and secretion, and the modes of intracellular degradation were determined by metabolic labeling experiments using [35S]sulfate and various chase protocols in combination with the use of PI-PLC and trypsin in rat ovarian granulosa cells. The experiments demonstrated that (i) both HS proteoglycan species are transferred from the Golgi to the cell surface with an average transit time of approximately 12 min. (ii) GPI-anchored HS proteoglycans are endocytosed with a t1/2 approximately 3 h, without being shed into the medium, and they are rapidly degraded, t1/2 approximately 25 min, without generating recognizable degradation intermediates. (iii) Protein-intercalated HS proteoglycans are partly (approximately 30%) shed from the cell surface into the medium and the remaining approximately 70% are endocytosed with a t1/2 approximately 4 h. After endocytosis, they undergo a slow (t1/2 approximately 4 h) stepwise degradation generating distinct HS oligosaccharides as degradation intermediates. These results indicate that the GPI-anchored and the protein-intercalated HS proteoglycans have distinct secretory, endocytotic, and intracellular degradation pathways probably due to the differences in their anchor structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号