首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP‐dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils. However, in experimental conditions of DNA loop extrusion, condensin restrains negative supercoils. Namely, following ATP‐mediated loading onto DNA, each condensin complex constrains a DNA linking number difference (∆Lk) of −0.4. This ∆Lk increases to −0.8 during ATP binding and resets to −0.4 upon ATP hydrolysis. These changes in DNA topology do not involve DNA unwinding, do not spread outside the condensin‐DNA complex and can occur in the absence of the condensin subunit Ycg1. These findings indicate that during ATP binding, a short DNA domain delimited by condensin is pinched into a negatively supercoiled loop. We propose that this loop is the feeding segment of DNA that is subsequently merged to enlarge an extruding loop. Such a “pinch and merge” mechanism implies that two DNA‐binding sites produce the feeding loop, while a third site, plausibly involving Ycg1, might anchor the extruding loop.  相似文献   

2.
3.
4.
Structural maintenance of chromosomes (SMC) complexes guard and organize the three-dimensional structure of chromosomal DNA across the tree of life. Many SMC functions can be explained by an inherent motor activity that extrudes large DNA loops while the complexes move along their substrate. Here, we review recent structural insights into the architecture and conservation of these molecular machines, their interaction with DNA, and the conformational changes that are linked to their ATP hydrolysis cycle.  相似文献   

5.
6.
《Molecular cell》2022,82(22):4202-4217.e5
  1. Download : Download high-res image (79KB)
  2. Download : Download full-size image
  相似文献   

7.
Type-IIA topoisomerases consume ATP as they catalyse the interconversion of DNA topoisomers by transporting one DNA segment through a transient break in another. It remains unclear how their activity simplifies the topology of DNA below equilibrium values. Here we report that eukaryotic topoisomerase II narrows the thermal distribution of DNA supercoils, by mainly removing negative DNA crossings. Surprisingly, this asymmetry in supercoil removal is not due to deformation of the DNA before strand passage. Topoisomerase II neither bends nor alters the helical conformation of the interacting DNA. Rather, it appears to interact with a third DNA segment, in addition to the gated and the transported segments. Remarkably, the simultaneous interaction with three DNA segments accounts for the asymmetric removal of supercoils in relaxed DNA and gives a clue to how topoisomerase II simplifies the topology of DNA against the thermal drive.  相似文献   

8.
9.
Nucleosome-like structures have been efficiently assembled in vitro by interaction of cauliflower histones, pBR322 DNA and cauliflower DNA topoisomerase, as assayed by supercoiling of relaxed circular DNA and by digestion with micrococcal nuclease. The optimum ionic strength for supercoiling was 150 mM KCl and the optimum weight ratio of histone to DNA was approximately 1.0. Four histones, H2A, H2B, H3 and H4, were necessary for the optimum assembling conditions, and the nucleosomes assembled protected DNA fragments of approximately 150 bp in length. It was found that cauliflower DNA topoisomerase acts not only as a DNA-relaxing enzyme but also as a chaperon factor for nucleosome assembly.  相似文献   

10.
Genome maintenance requires various nucleoid‐associated factors in prokaryotes. Among them, the SMC (Structural Maintenance of Chromosomes) protein has been thought to play a static role in the organization and segregation of the chromosome during cell division. However, recent studies have shown that the bacterial SMC is required to align left and right arms of the emerging chromosome and that the protein dynamically travels from origin to Ter region. A rod form of the SMC complex mediates DNA bridging and has been recognized as a machinery responsible for DNA loop extrusion, like eukaryotic condensin or cohesin complexes, which act as chromosome organizers. Attention is now turning to how the prototype of the complex is loaded on the entry site and translocated on chromosomal DNA, explaining its overall conformational changes at atomic levels. Here, we review and highlight recent findings concerning the prokaryotic SMC complex and discuss possible mechanisms from the viewpoint of protein architecture.  相似文献   

11.
Small RNAs mediate the silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. The unicellular ciliate Paramecium is a model to study dynamic genome organization in eukaryotic cells, given its unique feature of nuclear dimorphism. Here, the formation of the somatic macronucleus during sexual reproduction requires eliminating thousands of transposon remnants (IESs) and transposable elements scattered throughout the germline micronuclear genome. The elimination process is guided by Piwi‐associated small RNAs and leads to precise cleavage at IES boundaries. Here we show that IES recognition and precise excision are facilitated by recruiting ISWI1, a Paramecium homolog of the chromatin remodeler ISWI. ISWI1 knockdown substantially inhibits DNA elimination, quantitatively similar to development‐specific sRNA gene knockdowns but with much greater aberrant IES excision at alternative boundaries. We also identify key development‐specific sRNA biogenesis and transport proteins, Ptiwi01 and Ptiwi09, as ISWI1 cofactors in our co‐immunoprecipitation studies. Nucleosome profiling indicates that increased nucleosome density correlates with the requirement for ISWI1 and other proteins necessary for IES excision. We propose that chromatin remodeling together with small RNAs is essential for efficient and precise DNA elimination in Paramecium.  相似文献   

12.
13.
It was found recently that bacterial type II DNA topoisomerase, topo IV, is much more efficient in relaxing (+) DNA supercoiling than (-) supercoiling. This means that the DNA-enzyme complex is chiral. This chirality can appear upon binding the first segment that participates in the strand passing reaction (G segment) or only after the second segment (T segment) joins the complex. The former possibility is analyzed here. We assume that upon binding the enzyme, the G segment forms a part of left-handed helical turn. This model is an extension of the hairpin model introduced earlier to explain simplification of DNA topology by these enzymes. Using statistical-mechanical simulation of DNA properties, we estimated different consequences of the model: (1) relative rates of relaxation of (+) and (-) supercoiling by the enzyme; (2) the distribution of positions of the G segment in supercoiled molecules; (3) steady-state distribution of knots in circular molecules created by the topoisomerase; (4) the variance of topoisomer distribution created by the enzyme; (5) the effect of (+) and (-) supercoiling on the binding topo II with G segment. The simulation results are capable of explaining nearly all available experimental data, at least semiquantitatively. A few predictions obtained in the model analysis can be tested experimentally.  相似文献   

14.
15.
In probing the mechanism of inhibition of hypoxia inducible factor (HIF-1) by campothecins, we investigated the ability of human topoisomerase I to bind and cleave HIF-1 response element (HRE), which contains the known camptothecin-mediated topoisomerase I cleavage site 5′-TG. We observed that the selection of 5′-TG by human topoisomerase I and topotecan depends to a large extent on the specific flanking sequences, and that the presence of a G at the −2 position (where cleavage occurs between −1 and +1) prevents the HRE site from being a preferred site for such cleavage. Furthermore, the presence of −2 T/A can induce the cleavage at a less preferred TC or TA site. However, in the absence of a more preferred site, the HRE site is shown to be cleaved by human topoisomerase I in the presence of topotecan. Thus, it is implied that the −2 base has a significant influence on the selection of the camptothecin-mediated Topo I cleavage site, which can overcome the preference for +1G. While the cleavage site recognition has been known to be based on the concerted effect of several bases spanning the cleavage site, such a determining effect of an individual base has not been previously recognized. A possible base-specific interaction between DNA and topoisomerase I may be responsible for this sequence selectivity.  相似文献   

16.
Sperm‐mediated gene transfer (SMGT), the ability of sperm cells to spontaneously incorporate exogenous DNA and to deliver it to oocytes during fertilization, has been proposed as an easy and efficient method for producing transgenic animals. SMGT is still undergoing development and optimization to improve the uptake efficiency of foreign DNA by sperm cells, which is a preliminary, yet critical, step for successful SMGT. Towards this aim, we developed a quantitative, real‐time PCR‐based assay to assess the absolute number of exogenous plasmids internalized into the spermatozoon. Using this technique, we found that the circular form of the DNA is more efficiently taken up than the linearized form. We also found that DNA internalization into the nucleus of porcine sperm cells is better under specific methyl‐β‐cyclodextrin (MCD)‐treated conditions, where the plasma membrane properties were altered without significantly compromising sperm physiology. These results provide the first evidence that membrane cholesterol depletion by MCD might represent a novel strategy for enhancing the ability of sperm to take up heterologous DNA. Mol. Reprod. Dev. 79: 853–860, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
Hypercholesterolemia exacerbates autoimmune response and accelerates the progression of several autoimmune disorders, but the mechanistic basis is not well understood. We recently demonstrated that hypercholesterolemia is associated with increased serum extracellular DNA levels secondary to a defect in DNase‐mediated clearance of DNA. In this study, we tested whether the impaired DNase response plays a causal role in enhancing anti‐nuclear antibody levels and renal immune complex deposition in an Apoe −/− mouse model of hypercholesterolemia. We demonstrate that hypercholesterolemic mice have enhanced anti‐ds‐DNA and anti‐nucleosome antibody levels which is associated with increased immune complex deposition in the renal glomerulus. Importantly, treatment with DNase1 led to a decrease in both the autoantibody levels as well as renal pathology. Additionally, we show that humans with hypercholesterolemia have decreased systemic DNase activity and increased anti‐nuclear antibodies. In this context, our data suggest that recombinant DNase1 may be an attractive therapeutic strategy to lower autoimmune response and disease progression in patients with autoimmune disorders associated with concomitant hypercholesterolemia.  相似文献   

19.
Structural maintenance of chromosome (SMC) proteins comprise the core of several specialized complexes that stabilize the global architecture of the chromosomes by dynamically linking distant DNA fragments. This reaction however remains poorly understood giving rise to numerous proposed mechanisms of the proteins. Using two novel assays, we investigated real‐time formation of DNA bridges by bacterial condensin MukBEF. We report that MukBEF can efficiently bridge two DNAs and that this reaction involves multiple steps. The reaction begins with the formation of a stable MukB–DNA complex, which can further capture another protein‐free DNA fragment. The initial tether is unstable but is quickly strengthened by additional MukBs. DNA bridging is modulated but is not strictly dependent on ATP and MukEF. The reaction revealed high preference for right‐handed DNA crossings indicating that bridging involves physical association of MukB with both DNAs. Our data establish a comprehensive view of DNA bridging by MukBEF, which could explain how SMCs establish both intra‐ and interchromosomal links inside the cell and indicate that DNA binding and bridging could be separately regulated.  相似文献   

20.
《Molecular cell》2022,82(21):4145-4159.e7
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号