首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Soil samples were collected from 7 sites in the up-, mid-and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg.kg?1~1600 mg.kg?1 for mineral oil, 0.33 mg.kg?1~1.81 mg.kg?1 for Cd and 900.16 mg.kg?1 ~ 2737.91 mg.kg?1 for PAHs. The inhibition rates of root elongation were from ?20% up to 40 %, and mortality rates of earthworms ranged from 0%~40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthworm growth were from ?19.36% to 34.53%, showing effects of stimulation at 2 weeks to an increasing effects of inhibition at 4, 6 and 8 weeks, respectively. Mortality rates correlated with the loss of body weight of earthworms.This study indicated the potential risk of pollutants of environmental low content in soil by the determination of selected chemicals combined with toxicity indexes.  相似文献   

2.
Soil samples were collected from 7 sites in the up-, mid- and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg·kg-1-1600 mg·kg-1 for mineral oil, 0.33 mg·kg-1-1.81 mg·kg-1 for Cd and 900.16 mg·kg-1 -2737.91 mg·kg-1 for PAHs. The inhibition rates of root elongation were from -20% up to 40 %, and mortality rates of earthworms ranged from 0%-40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthw  相似文献   

3.
Soil samples were collected from 7 sites in the up-, mid- and down-reach along and nearby the wastewater irrigation channel, western Shenyang of China. The concentrations of selected pollutants (mineral oil, PAHs - polycycle aromatic hydrocarbons and Cd) were determined by UV spectrometer, HPLC and AAS (atomic adsorption spectrometer) spectrometer, respectively. Toxicity effects of soils were evaluated by seedling emergence test with root length of wheat as the end-point and by earthworms test with the mortality rate and inhibition rates of body weight as endpoints. Results showed accumulation of pollutants for most soils with concentration of 200.2 mg.kg-1 ~1600 mg.kg-1 for mineral oil, 0.33 mg.kg-1~1.81 mg.kg-1 for Cd and 900.16 mg.kg-1~ 2737.91 mg.kg-1 for PAHs. The inhibition rates of root elongation were from -20% up to 40 %, and mortality rates of earthworms ranged from 0%~40% from the exposure period of two weeks to eight weeks by sampling interval of two weeks, the inhibition rates of earthworm growth were from -19.36% to 34.53%, showing effects of stimulation at 2 weeks to an increasing effects of inhibition at 4, 6 and 8 weeks, respectively. Mortality rates correlated with the loss of body weight of earthworms.This study indicated the potential risk of pollutants of environmental low content in soil by the determination of selected chemicals combined with toxicity indexes.  相似文献   

4.
Changes in the composition of microbial complexes and their biochemical activity in soil in the vicinity of a strong source of HF emission have been studied. A sharp decrease of the biomass, the number of asporous bacteria and actinomycetes, and a smaller decrease of the number of microscopic fungi has been revealed, along with a decrease in the enzymatic and respiratory activity of contaminated soil with the relative increase in the fraction of sporiferous bacteria. On the basis of the response of introduced population of Bacillus subtilis to different doses of HF, NaF, Na2SO3 microbiological norm-fixing for technogenic soil ecosystems has been carried out.  相似文献   

5.
Summary The ability of tropical Brazilian basidiomycetes to degrade pentachlorophenol (PCP) in soils from areas contaminated with organochlorine industrial residues was studied. Thirty-six basidiomycetes isolated from different tropical ecosystems were tested for tolerance to high PCP concentrations in soil. Peniophoracinereaand Psilocybecastanella, two strains of Trametes villosa,Agrocybe perfecta, Trichaptum bisogenumand Lentinus villosuswere able to colonize soil columns containing up to 4600 mg pentachlorophenol kg−1soil. The first four species were inoculated into soil containing 1278 mg pentachlorophenol kg−1 soil supplemented with gypsum and sugar cane bagasse. P. cinerea,P.castanella, T. villosaCCB176 and CCB213 and Agrocybe perfectareduced the PCP present in the contaminated soil by 78, 64, 58, 36 and 43%, respectively, after 90 days of incubation. All fungi mineralized [14C] pentachlorophenol, mainlyP. cinereaandT. villosawith the production of 7.11 and 8.15% 14CO2, respectively, during 120 days of incubation. All fungi produced chloride ions during growth on soil containing PCP, indicating dehalogenation of the molecule. Conversion of PCP to pentachloroanisole was observed only after 90 days of incubation in soils inoculated with A. perfecta, P.cinereaand one of T. villosastrain. The present study shows the potential of Brazilian fungi for the biodegradation of toxic and persistent pollutants and it is the first to report fungal growth and PCP depletion in soils with high pentachlorophenol concentrations.  相似文献   

6.
Nitrification plays a significant role in the global nitrogen cycle. Ammonia oxidation, the first step of nitrification, is performed in wastewater treatment by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Most previous studies focused on their distribution in natural environments. In this study we qualified and quantified AOB, AOA, total bacteria, and total archaea in six different wastewater treatment systems (WTSs) using clone library and real-time PCR techniques. The results revealed that wastewater quality was an essential factor for the distribution of AOB and AOA in aerobic reactors. Although both AOB and AOA were present in all samples and contributed to nitrification simultaneously, AOB were the dominant nitrifiers in the three industrial WTSs, whereas AOA were dominant in the three domestic WTSs. This indicates AOA may be more sensitive to some toxic compounds than AOB. In addition, the dominant groups of AOB in the industrial WTSs were Nitrosomonas and Nitrosospira; the composition of AOA in the domestic WTSs was very similar, possibly due to the same source of raw sewage.  相似文献   

7.
An evaluation of the genotoxic potential of different wastewaters collected in the Rouen area was performed with the SOS chromotest (on Escherichia coli PQ37) and the Salmonella fluctuation test on Salmonella typhimurium strains TA98, TA100 and TA102 with or without metabolic activation. The samples were taken during two 1-week periods, one in January and one in April 2003. Six sites were selected for wastewater sampling in order to allow a comparative study between an area of mixed discharge (industrial, hospital and domestic) and an area of primarily domestic discharge. Out of a total of 71 daytime samples tested, 46 (65%) were positive in at least one assay: 22 samples out of 33 in January (67%), and 24 samples out of 38 in April (63%). The two genotoxicity tests have different sensitivities. Indeed, the Salmonella fluctuation test allowed the detection of 56% of the samples as genotoxic in January (18 out of 33), and 63% in April (24 out of 38) while the SOS chromotest allowed the detection of 18% of the samples as genotoxic, whatever the sampling period. The samples collected in domestic wastewater are at least as genotoxic as the samples collected in mixed wastewater. The possible source of the detected genotoxicity (industrial, hospital or domestic) is discussed. The results of this study show that the different types of wastewaters present a genotoxic risk. Additional studies should be undertaken in the analytical field in order to try to identify and quantify the compounds responsible for the genotoxicity. This difficult task will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of the wastewater.  相似文献   

8.
An evaluation of the genotoxic potential of different wastewaters collected in the Rouen area was performed with the SOS chromotest (on Escherichia coli PQ37) and the Salmonella fluctuation test on Salmonella typhimurium strains TA98, TA100 and TA102 with or without metabolic activation. The samples were taken during two 1-week periods, one in January and one in April 2003. Six sites were selected for wastewater sampling in order to allow a comparative study between an area of mixed discharge (industrial, hospital and domestic) and an area of primarily domestic discharge.Out of a total of 71 daytime samples tested, 46 (65%) were positive in at least one assay: 22 samples out of 33 in January (67%), and 24 samples out of 38 in April (63%). The two genotoxicity tests have different sensitivities. Indeed, the Salmonella fluctuation test allowed the detection of 56% of the samples as genotoxic in January (18 out of 33), and 63% in April (24 out of 38) while the SOS chromotest allowed the detection of 18% of the samples as genotoxic, whatever the sampling period. The samples collected in domestic wastewater are at least as genotoxic as the samples collected in mixed wastewater. The possible source of the detected genotoxicity (industrial, hospital or domestic) is discussed.The results of this study show that the different types of wastewaters present a genotoxic risk. Additional studies should be undertaken in the analytical field in order to try to identify and quantify the compounds responsible for the genotoxicity. This difficult task will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of the wastewater.  相似文献   

9.
The aim of this study was to investigate the treatment efficiency of passive vertical-flow wetland filters containing different macrophytes (Phragmites and/or Typha) and granular media with different adsorption capacities. Gravel, sand, granular activated carbon, charcoal and Filtralite (light expanded clay) were used as filter media. Different concentrations of lead and copper sulfate were added to polluted urban stream inflow water to simulate pretreated mine wastewater. The relationships between growth media, microbial and plant communities as well as the reduction of predominantly lead, copper and five-day biochemical oxygen demand (BOD5) were investigated. An analysis of variance showed that concentration reductions (mg l(-1)) of lead, copper and BOD5 were significantly similar for the six experimental wetlands. Microbial diversity was low due to metal pollution and similar for all filters. There appears to be no additional benefit in using adsorption media and macrophytes to enhance biomass performance during the first 10 months of operation.  相似文献   

10.
11.
Land is used for agricultural production, industrial development, urban construction, and environmental beautification, thus soil environment is an important component of living ecosystems for human survival.  相似文献   

12.
The Qingshan district of Wuhan City is a typical Chinese industrial area. An increase in heavy metal pollution in the region's soil, due to industrialization and urbanization, has become a serious environmental problem. Surface soil samples from 155 sites were collected and analyzed. The median concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in soil were 2.3, 46.2, 24.3, 28.2, and 86.8 mg/kg, respectively. Principal component analysis coupled with hierarchical cluster analysis showed that (1) in residential and industrial areas, Pb, Cu, and Zn concentrations were mainly affected by industrial emissions and traffic emissions, whereas in agricultural areas Cu and Zn were less affected by industrial emission and traffic emission, whereas Pb was affected by agricultural activities; and (2) Cd originated from a combination of sources, including industrial activities, traffic emission, and hypergene geochemical characteristics. The integrated pollution index varied from 1.1 to 16.6 with a mean of 3.9, and 70.6% of the area is extremely contaminated, 28.1% is heavily contaminated, and the remainder is moderately contaminated.  相似文献   

13.
The water-holding functions of soils and ground covers in terms of moss and litters in the three major shrubs at different altitude gradients were studied using field investigation. The water-holding functions were measured and expressed with Biomass (t/hm2) of moss and litters, along with their maximal water holding capacity (MWHC, t/hm2) and maximal water holding rate (MWHR, %). The physical characteristics of the soils included bulk density, MWHC, capillary water holding capacity (CWHC), and least water holding capacity (LWHC). The result showed that Rhododendron przewalskii shrub exhibited the highest water-holding capacity among the three types. The average MWHC of the moss, litters, and at a depth of 0–40cm in R. przewalskii at different elevation gradients was 46.73,139.98 t/hm2, and 2216.92 t/hm2, respectively, whereas the average MWHC of the moss, litters, and soils in Quercus aquifolioides was 1.64, 72.08 t/hm2 and 2114.88 t/hm2, respectively. There was no moss in Quercus cocciferoides, and the average MWHC of litters and soils at a depth of 0–40 cm at different elevation gradients was 84.55 t/hm2 and 2062.83 t/hm2, respectively. The biomass and MWHC of the moss layer in R. przewalskii shrub significantly decreased with increasing elevation, whereas the reverse occurred in Q. aquifolioides before the maximum was reached at 3400 m, and then the SCM and MWHC decreased. MWHR of the moss layer in R. przewalskii was higher than that in Q. aquifolioides. The biomass and MWHC of the litters in R. przewalskii and Q. aquifolioides decreased with increasing elevation, whereas the reverse occurred in Q. cocciferoide. Regardless of shrub types, soil bulk density increased significantly with increasing soil depth, whereas MWHC decreased significantly with increasing soil depth. Significant decrease in CWHC and LWHC were found only in certain shrub communities. The MWHC with respect to the 0–40cm soil depth significantly decreased with increasing elevation only in R. przewalskii shrub, whereas there was no significant difference in MWHCs among the different elevation gradients for the other two types.  相似文献   

14.
Zhang Y D  Liu S R  Ma J M 《农业工程》2006,26(9):2775-2781
The water-holding functions of soils and ground covers in terms of moss and litters in the three major shrubs at different altitude gradients were studied using field investigation. The water-holding functions were measured and expressed with Biomass (t/hm2) of moss and litters, along with their maximal water holding capacity (MWHC, t/hm2) and maximal water holding rate (MWHR, %). The physical characteristics of the soils included bulk density, MWHC, capillary water holding capacity (CWHC), and least water holding capacity (LWHC). The result showed that Rhododendron przewalskii shrub exhibited the highest water-holding capacity among the three types. The average MWHC of the moss, litters, and at a depth of 0–40cm in R. przewalskii at different elevation gradients was 46.73,139.98 t/hm2, and 2216.92 t/hm2, respectively, whereas the average MWHC of the moss, litters, and soils in Quercus aquifolioides was 1.64, 72.08 t/hm2 and 2114.88 t/hm2, respectively. There was no moss in Quercus cocciferoides, and the average MWHC of litters and soils at a depth of 0–40 cm at different elevation gradients was 84.55 t/hm2 and 2062.83 t/hm2, respectively. The biomass and MWHC of the moss layer in R. przewalskii shrub significantly decreased with increasing elevation, whereas the reverse occurred in Q. aquifolioides before the maximum was reached at 3400 m, and then the SCM and MWHC decreased. MWHR of the moss layer in R. przewalskii was higher than that in Q. aquifolioides. The biomass and MWHC of the litters in R. przewalskii and Q. aquifolioides decreased with increasing elevation, whereas the reverse occurred in Q. cocciferoide. Regardless of shrub types, soil bulk density increased significantly with increasing soil depth, whereas MWHC decreased significantly with increasing soil depth. Significant decrease in CWHC and LWHC were found only in certain shrub communities. The MWHC with respect to the 0–40cm soil depth significantly decreased with increasing elevation only in R. przewalskii shrub, whereas there was no significant difference in MWHCs among the different elevation gradients for the other two types.  相似文献   

15.
AIMS: To isolate and characterize atrazine-degrading bacteria in order to identify suitable candidates for potential use in bioremediation of atrazine contamination. METHODS AND RESULTS: A high efficiency atrazine-degrading bacterium, strain AD1, which was capable of utilizing atrazine as a sole nitrogen source for growth, was isolated from industrial wastewater. 16S rDNA sequencing identified AD1 as an Arthrobacter sp. The atrazine chlorohydrolase gene (atzA) isolated from strain AD1 differed from that found in the Pseudomonas sp. ADP by only one nucleotide. However, it was found located on the bacterial chromosome rather than on plasmids as previously reported for other bacteria. CONCLUSIONS: Atrazine chlorohydrolase gene, atzA, either encoded by chromosome or plasmid, is highly conserved. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison analysis of atrazine degradation gene structure and arrangement in this and other bacteria provides insight into our understanding of the ecology and evolution of atrazine-degrading bacteria.  相似文献   

16.
17.
Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.  相似文献   

18.
The combined use of plants and bacteria is a promising approach for the remediation of polluted soil. In the current study, the potential of bacterial endophytes in partnership with Leptochloa fusca (L.) Kunth was evaluated for the remediation of uranium (U)- and lead (Pb)-contaminated soil. L. fusca was vegetated in contaminated soil and inoculated with three different endophytic bacterial strains, Pantoea stewartii ASI11, Enterobacter sp. HU38, and Microbacterium arborescens HU33, individually as well as in combination. The results showed that the L. fusca can grow in the contaminated soil. Bacterial inoculation improved plant growth and phytoremediation capacity: this manifested in the form of a 22–51% increase in root length, 25–62% increase in shoot height, 10–21% increase in chlorophyll content, and 17–59% more plant biomass in U- and Pb-contaminated soils as compared to plants without bacterial inoculation. Although L. fusca plants showed potential to accumulate U and Pb in their root and shoot on their own, bacterial consortia further enhanced metal uptake capacity by 53–88% for U and 58–97% for Pb. Our results indicate that the combination of L. fusca and endophytic bacterial consortia can effectively be used for the phytostabilization of both U- and Pb-contaminated soils.  相似文献   

19.
Abstract

The hazard imposed by trace elements within soils is dependent on soil properties and the relative distribution of metal species. Hence, a greenhouse column study was conducted to investigate the geochemical speciation and bioaccessibility of lead (Pb) as a function of soil properties. Four different soil types (Immokalee, Belle Glade, Tobosa and Millhopper series) varying in physico-chemical properties were selected and amended with Pb as Pb(NO3) at 400, 800, and 1,200 mg kg?1. A sequential extraction was employed to define the reactive metal pool, which was correlated with Pb bio-accessibility as determined by the physiologically based extraction test. Results show that Pb was mainly distributed in soluble+exchangeable phase in Immokallee (82%) and Millhopper (45%) series, and carbonate and Fe+Mn oxide fractions in Belle Glade (14–74%) and Tobosa (31–64%) series at time zero. With soil aging, Pb underwent chemical transformations in the soils and the majority of added Pb was associated with Fe+Mn oxide fraction (64–81%). Also, Pb bioaccessibility varied widely as a function of soil type and soil aging. Gastric phase (IVG-S) extracted 34–81% and 29–75% and the absorbed intestinal phase (IVG-AI) extracted 12–79% and 12–45% of amended Pb in all the soils at time zero and 6 months, respectively. Among soil types, Tobosa and Belle Glade showed reduced bioaccessibility relative to Immokalee and Millhopper. Statistical analysis revealed that the IVG-S Pb decreases as soil organic matter and cation exchange capacity (CEC) increases and total P decreases. While the Mehlich extractable P and Ca+Mg, total Fe+Al and organic matter predicted the Pb in an intestinal system.  相似文献   

20.
In this study, we tried to isolate legionellae from nine Legionella DNA-positive soil samples collected from four different sites contaminated with industrial wastes in Japan. Using culture methods with or without Acanthamoeba culbertsoni, a total of 22 isolates of legionellae were obtained from five of the nine samples. Identification of species and/or serogroups (SGs), performed by DNA-DNA hybridization and agglutination tests, revealed that the 22 isolates consisted of ten isolates of Legionella pneumophila including five SGs, five Legionella feeleii, and one each of Legionella dumoffii, Legionella longbeachae, and Legionella jamestownensis. The species of the remaining four isolates (strains OA1-1, -2, -3, and -4) could not be determined, suggesting that these isolates may belong to new species. The 16S rDNA sequences (1476-1488bp) of the isolates had similarities of less than 95.0% compared to other Legionella species. A phylogenetic tree created by analysis of the 16S rRNA (1270bp) genes demonstrated that the isolates formed distinct clusters within the genus Legionella. Quantitative DNA-DNA hybridization tests on the OA1 strains indicated that OA1-1 should be categorized as a new taxon, whereas OA1-2, -3, and -4 were also genetically independent in another taxon. Based on the evaluated phenotypic and phylogenetic characteristics, it is proposed that one of these isolates from the soils, OA1-1, be classified as a novel species, Legionella impletisoli sp. nov.; the type strain is strain OA1-1(T) (=JCM 13919(T)=DSMZ 18493(T)). The remaining three isolates belong to another novel Legionella species, Legionella yabuuchiae sp. nov.; the type strain is strain OA1-2(T) (=JCM 14148(T)=DSMZ 18492(T)). This is the first report on the isolation of legionellae from soils contaminated with industrial wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号