首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the increased demand for ethanol biofuel from sugar cane, the area planted to this crop in Brazil has increased from 4.8 to 9.5 Mha since 2000. At the same time there has been pressure from environmental groups and others to cease the pre-harvest burning of cane, and today over 40% of the crop is harvested without burning, thus conserving the trash on the soil surface. While most trash decomposes during the year, it is generally assumed that this transition from burning to trash conservation will have benefits for cane productivity and increase soil carbon stocks. To investigate the possible benefits of this change of practice an experiment was carried out in the state of Espírito Santo, south-eastern Brazil, to investigate the long-term effects of the practice of pre-harvested burning compared to trash conservation on soil fertility and soil C and N stocks. The results showed that over a 14-year period, trash conservation marginally decreased soil acidity and significantly increased soil C and N stocks in 0–10 cm depth interval. Although the trash conservation treatment accumulated 13 Mg C ha?1 more than the burned treatment, this difference was not statistically different. However, the stocks of N to 100 cm depth were 900 kg ha?1 higher under the trash conservation treatment and this difference was statistically significant. The 13C abundance data suggested that where trash was conserved, more soil C was derived from the sugar cane than from the original native vegetation.  相似文献   

2.
The advantages of producing biofuels to replace fossil energy sources are derived from the fact that the energy accumulated in the biomass is captured directly from photosynthesis and is thus renewable, and that the cycle of carbon dioxide fixation by the crop, followed by burning of the fuel makes no overall contribution to atmospheric CO2 or, consequently, to global warming. However, these advantages are negated if large quantities of fossil fuels need to be used to grow or process the biofuel crop. In this regard, the Brazilian bioethanol program, based on the fermentation/distillation of sugar cane juice, is particularly favorable, not only because the crop is principally hand harvested, but also because of the low nitrogen fertilizer use on sugar cane in Brazil. Recent 15N and N balance studies have shown that in some Brazilian cane varieties, high yields are possible without N fertilization because the plants are able to obtain large contributions of nitrogen from plant-associated biological N2 fixation (BNF). The N2-fixing acid-tolerant bacterium Acetobacter diazotrophicus was first found to occur within roots, stems, and leaves of sugar cane. Subsequently, two species of Herbaspirillum also have been found to occur within the interior of all sugar cane tissues. The discovery of these, and other N2-fixing bacteria that survive poorly in soil but thrive within plant tissue (endophytic bacteria), may account for the high BNF contributions observed in sugar cane. Further study of this system should allow the gradual elimination of N fertilizer use on sugar cane, at least in Brazil, and opens up the possibility of the extension of this efficient N2-fixing system to cereal and other crops with consequent immense potential benefits to tropical agriculture.  相似文献   

3.
With the introduction of the pneumococcal conjugate vaccine (PCV), the number of cases of non-vaccine type pneumococci and non-encapsulated Streptococcus pneumoniae (NESp) infection have increased. In order to clarify how pspK-harbouring NESp might have emerged, we characterised NESp and analysed the correlation between transformation and non-encapsulation. A total of 26 NESp strains were used in this study. The genetic backgrounds were compared using multilocus sequence typing (MLST). The ΔpspK::ermB strain, in which pspK was replaced by ermB in NESp, was constructed by homologous recombination. The genomic DNA of the ΔpspK::ermB strain was transformed into two types of encapsulated S. pneumoniae via transformation. The fitness of the parent and non-encapsulated transformants was compared using the growth curve. All NESp had pspK instead of capsular coding regions and were classified into 14 types by MLST, which indicated that NESp had several genetic backgrounds. Transformation of ΔpspK::ermB genomic DNA resulted in 10−4‒10−5 non-encapsulated transformants. Non-encapsulated transformants could grow faster than the encapsulated parent strain. The acquisition of pspK region via transformation contributed to the loss of encapsulation with high frequency. The present results suggest that non-encapsulation through pspK acquisition could be a potential mechanism to evade PCV.  相似文献   

4.
Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.  相似文献   

5.
In Brazil, bioethanol is produced by sucrose fermentation from sugarcane by Saccharomyces cerevisiae in a fed-batch process that uses high density of yeast cells (15–25 % of wet weight/v) and high sugar concentration (18–22 % of total sugars). Several research efforts have been employed to improve the efficiency of this process through the isolation of yeasts better adapted to the Brazilian fermentation conditions. Two important wild strains named CAT-1 and PE-2 were isolated during the fermentation process and were responsible for almost 60 % of the total ethanol production in Brazil. However, in the last decade the fermentative substrate composition was much modified, since new sugar cane crops were developed, the use of molasses instead of sugar cane juice increase and with the prohibition of burning of sugarcane prior harvest. As consequence, these previously isolated strains are being replaced by new wild yeasts in most of ethanol plants. In this new scenario the isolation of novel better adapted yeasts with improved fermentative characteristics is still a big challenge. Here, we discuss the main aspects of Brazilian ethanol production and the efforts for the selection, characterization and genetic modifications of new strains with important phenotypic traits such as thermotolerance.  相似文献   

6.
Goal, Scope and Background  Agricultural production includes not only crop production, but also food processing, transport, distribution, preparation, and disposal. The effects of all these must be considered and controlled if the food chain is to be made sustainable. The goal of this case study was to identify and review the significant areas of potential environmental impacts across the whole life cycle of cane sugar on the island of Mauritius. Methods  The functional unit was one tonne of exported raw sugar from the island. The life cycle investigated includes the stage of cane cultivation and harvest, cane burning, transport, fertilizer and herbicide manufacture, cane sugar manufacture and electricity generation from bagasse. Data was gathered from companies, factories, sugar statistics, databases and literature. Energy depletion, climate change, acidification, oxidant formation, nutrification, aquatic ecotoxicity and human toxicity were assessed. Results and Discussion  The inventory of the current sugar production system revealed that the production of one tonne of sugar requires, on average, a land area of 0.12 ha, the application of 0.84 kg of herbicides and 16.5 kg of N-fertilizer, use of 553 tons of water and 170 tonne-km of transport services. The total energy consumption is about 14235 MJ per tonne of sugar, of which fossil fuel consumption accounts for 1995 MJ and the rest is from renewable bagasse. 160 kg of CO2 per tonne of sugar is released from fossil fuel energy use and the net avoided emissions of CO2 on the island due to the use of bagasse as an energy source is 932,000 tonnes. 1.7 kg TSP, 1.21 kg SO2,1.26 kgNOxand 1.26 kg CO are emitted to the air per tonne of sugar produced. 1.7 kg N, 0.002 kg herbicide, 19.1 kg COD, 13.1 kgTSS and 0.37 kg PO4 3- are emitted to water per tonne of sugar produced. Cane cultivation and harvest accounts for the largest environmental impact (44%) followed by fertilizer and herbicide manufacture (22%), sugar processing and electricity generation (20%), transportation (13%) and cane burning (1%). Nutrification is the main impact followed by acidification and energy depletion. Conclusions  There are a number of options for improvement of the environmental performance of the cane-sugar production chain. Cane cultivation, and fertilizer and herbicide manufacture, were hotspots for most of the impact categories investigated. Better irrigation systems, precision farming, optimal use of herbicides, centralisation of sugar factories, implementation of co-generation projects and pollution control during manufacturing and bagasse burning are measures that would considerably decrease resource use and environmental impacts. Recommendation and Outlook  LCA was shown to be a valuable tool to assess the environmental impacts throughout the food production chain and to evaluate government policies on agricultural production systems.  相似文献   

7.
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.  相似文献   

8.
Homologous recombination (HR) is required for both genome maintenance and generation of diversity in eukaryotes and prokaryotes. This process initiates from single-stranded (ss) DNA and is driven by a universal recombinase, which promotes strand exchange between homologous sequences. The bacterial recombinase, RecA, is loaded onto ssDNA by recombinase loaders, RecBCD and RecFOR for genome maintenance. DprA was recently proposed as a third loader dedicated to genetic transformation. Here we assessed the role of RecFOR in transformation of the human pathogen Streptococcus pneumoniae. We firstly established that RecFOR proteins are not required for plasmid transformation, strongly suggesting that DprA ensures annealing of plasmid single-strands internalized in the process. We then observed no reduction in chromosomal transformation using a PCR fragment as donor, contrasting with the 10,000-fold drop in dprA - cells and demonstrating that RecFOR play no role in transformation. However, a ∼1.45-fold drop in transformation was observed with total chromosomal DNA in recFOR mutants. To account for this limited deficit, we hypothesized that transformation with chromosomal DNA stimulated unexpectedly high frequency (>30% of cells) formation of chromosome dimers as an intermediate in the generation of tandem duplications, and that RecFOR were crucial for dimer resolution. We validated this hypothesis, showing that the site-specific recombinase XerS was also crucial for dimer resolution. An even higher frequency of dimer formation (>80% of cells) was promoted by interspecies transformation with Streptococcus mitis chromosomal DNA, which contains numerous inversions compared to pneumococcal chromosome, each potentially promoting dimerization. In the absence of RecFOR and XerS, dimers persist, as confirmed by DAPI staining, and can limit the efficiency of transformation, since resulting in loss of transformant chromosome. These findings strengthen the view that different HR machineries exist for genome maintenance and transformation in pneumococci. These observations presumably apply to most naturally transformable species.  相似文献   

9.
Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.  相似文献   

10.
The respiratory tract pathogen Streptococcus pneumoniae is a primary cause of morbidity and mortality worldwide. Pili enhance initial adhesion as well as the capacity of pneumococci to cause pneumonia and bacteremia. Pilus-associated sortases (SrtB, SrtC, and SrtD) are involved in the biogenesis of pneumococcal pili, composed of repeating units of RrgB that create the stalk to which the RrgA adhesin and the preferential pilus tip subunit RrgC are covalently associated. Using single sortase-expressing strains, we demonstrate that both pilin-polymerizing sortases SrtB and SrtC can covalently link pili to the peptidoglycan cell wall, a property shared with the non-pilus-polymerizing enzyme SrtD and the housekeeping sortase SrtA. Comparative analysis of the crystal structures of S. pneumoniae SrtC and SrtB revealed structural differences explaining the incapacity of SrtC, but not of SrtB, to incorporate RrgC into the pilus. Accordingly, site-directed mutagenesis of Thr160 in SrtB to an arginine as in SrtC (Arg160) partially converted its substrate specificity into that of SrtC. Solving two crystal structures for SrtC suggests that an opening of a flexible lid and a concomitant cysteine rotation are important for catalysis and the activation of the catalytic cysteine of pilus-associated sortases.  相似文献   

11.
Since the 1970s the area under sugarcane in Brazil has increased from 2 million to over 5 million ha (M ha), and it is expected to pass the 7 M ha mark in 2007. More than half of the cane is harvested to produce bioethanol as a fuel for light vehicles. The distilleries produce approximately 13 L of distillery waste (vinasse) for each litre of ethanol produced. In the 1980s there was considerable concern over the long-term effects of the disposal of this material (containing about 1% carbon and high in K) on cane yields if it was applied to the field. At the same time there was a growing movement to abandon the practice of pre-harvest burning and some research was showing that some Brazilian varieties of sugar cane were able to obtain significant contributions of N from plant-associated biological nitrogen fixation (BNF). For these reasons an experiment was installed on a cane plantation in the state of Pernambuco, NE Brazil to investigate the long-term effects of vinasse and N fertiliser additions and the practice of pre-harvest burning on crop and sugar yield, soil fertility parameters, N balance and soil C stocks. The results showed that over a 16-year period, trash conservation (abandonment of burning) increased cane yields by 25% from a mean of 46 to 58 Mg ha−1. Vinasse applications (80 m3 ha−1 crop−1) increased mean cane and sugar yield by 12 to 13% and the application of 80 kg N ha−1 as urea increased cane yields by 9%, but total sugar yield by less than 6% (from 7.0 to 7.4 Mg ha−1 crop−1). The total N balance for the soil/plant system when only the surface 20 cm of the soil was considered was positive in plots where no N fertiliser was added. However, the data indicated that during the 16 years of the study considerable quantities of soil organic matter were accumulated below 20 cm depth such that the N balance considering the soil to 60 cm depth was strongly positive, except where N fertiliser was added. The data indicated that there were considerable BNF inputs to the system, which was consistent with its low response to N fertiliser and low N fertiliser-use-efficiency. There were no significant effects of vinasse or urea addition, or trash conservation on soil C stocks, although the higher yields proportioned by trash conservation had potentially significant benefits for increased mitigation of CO2 emissions where the main use of the cane was for bioethanol production.  相似文献   

12.
Klebsiella pneumoniae is an important bacterial pathogen of man that is commonly associated with opportunistic and hospital-associated infections. Increasing levels of multiple-antibiotic resistance associated with this species pose a major emerging clinical problem. This organism also occurs naturally in other diverse environments, including the soil. Consistent with its varied lifestyle and membership of the Enterobacteriaceae family, K. pneumoniae genomes exhibit highly plastic architecture comprising a core genome backbone interspersed with numerous and varied alien genomic islands. In this study the size of the presently known K. pneumoniae pan-genome gene pool was estimated through analysis of complete sequences of three chromosomes and 31 plasmids belonging to K. pneumoniae strains. In addition, using a PCR-based strategy the genomic content of eight tRNA/tmRNA gene sites that serve as DNA insertion hotspots were investigated in 28 diverse environmental and clinical strains of K. pneumoniae. Sequencing and characterization of five newly identified horizontally-acquired tmRNA-associated islands further expanded the archived K. pneumoniae gene pool to a total of 7648 unique gene members. Large-scale investigation of the content of tRNA/tmRNA hotspots will be useful to identify and/or survey accessory sequences dispersed amongst hundreds to thousands of members of many key bacterial species.  相似文献   

13.
Membrane surface localized endonuclease EndA of the pulmonary pathogen Streptococcus pneumoniae (pneumococcus) is required for both genetic transformation and virulence. Pneumococcus expresses EndA during growth. However, it has been reported that EndA has no access to external DNA when pneumococcal cells are not competent for genetic transformation, and thus, unable to degrade extracellular DNA. Here, by using both biochemical and genetic methods, we demonstrate the existence of EndA-mediated nucleolytic activity independent of the competence state of pneumococcal cells. Pneumococcal mutants that are genetically deficient in competence development and genetic transformation have extracellular nuclease activity comparable to their parental wild type, including their ability to degrade neutrophil extracellular traps (NETs). The autolysis deficient ΔlytA mutant and its isogenic choline-treated parental wild-type strain D39 degrade extracellular DNA readily, suggesting that partial cell autolysis is not required for DNA degradation. We show that EndA molecules are secreted into the culture medium during the growth of pneumococcal cells, and contribute substantially to competence-independent nucleolytic activity. The competence-independent activity of EndA is responsible for the rapid degradation of DNA and NETs, and is required for the full virulence of Streptococcus pneumoniae during lung infection.  相似文献   

14.
15.
While nasopharyngeal sampling is the gold standard for the detection of Streptococcus pneumoniae carriage, historically seen, saliva sampling also seems highly sensitive for pneumococcal detection. We investigated S. pneumoniae carriage in saliva from fifty schoolchildren by conventional and molecular methods. Saliva was first culture-enriched for pneumococci, after which, DNA was extracted from all bacterial growth and tested by quantitative-PCR (qPCR) for pneumococcus-specific genes lytA and piaA. Next, serotype composition of the samples was determined by serotype-specific qPCRs, conventional-PCRs (cPCR) and sequencing of cPCR amplicons. Although only 2 (4%) of 50 samples were positive by conventional diagnostic culture, 44 (88%) were positive for pneumococci by qPCR. In total, we detected the presence of at least 81 pneumococcal strains representing 20 serotypes in samples from 44 carriers with 23 carriers (52%) positive for multiple (up to 6) serotypes. The number of serotypes detected per sample correlated with pneumococcal abundance. This study shows that saliva could be used as a tool for future pneumococcal surveillance studies. Furthermore, high rates of pneumococcal carriage and co-carriage of multiple pneumococcal strains together with a large number of serotypes in circulation suggests a ubiquitous presence of S. pneumoniae in saliva of school-aged children. Our results also suggest that factors promoting pneumococcal carriage within individual hosts may weaken competitive interactions between S. pneumoniae strains.  相似文献   

16.
Many important pathogens have humans as their normal ecological niche where healthy carriage dominates over disease. The ability of these commensal pathogens, such as Streptococcus pneumoniae, to cause disease depends on a series of microbial factors as well as of genetic and environmental factors in the human host affecting the clearing capacity mediated by the innate and adaptive immune system. This delicate interplay between microbe and host affects not only the likelihood for a commensal pathogen to cause disease, but also disease type and disease severity.  相似文献   

17.
Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA‐dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA‐ComFC duo at the interface between DNA uptake and DNA recombination during transformation.  相似文献   

18.
The bacterium Streptococcus pneumoniae (pneumococcus) is one of the most important human bacterial pathogens, and a leading cause of morbidity and mortality worldwide. The pneumococcus is also known for undergoing extensive homologous recombination via transformation with exogenous DNA. It has been shown that recombination has a major impact on the evolution of the pathogen, including acquisition of antibiotic resistance and serotype-switching. Nevertheless, the mechanism and the rates of recombination in an epidemiological context remain poorly understood. Here, we proposed several mathematical models to describe the rate and size of recombination in the evolutionary history of two very distinct pneumococcal lineages, PMEN1 and CC180. We found that, in both lineages, the process of homologous recombination was best described by a heterogeneous model of recombination with single, short, frequent replacements, which we call micro-recombinations, and rarer, multi-fragment, saltational replacements, which we call macro-recombinations. Macro-recombination was associated with major phenotypic changes, including serotype-switching events, and thus was a major driver of the diversification of the pathogen. We critically evaluate biological and epidemiological processes that could give rise to the micro-recombination and macro-recombination processes.  相似文献   

19.
Pneumonia is one of the major health care problems in developing and industrialized countries and is associated with considerable morbidity and mortality. Despite advances in knowledge of this illness, the availability of intensive care units (ICU), and the use of potent antimicrobial agents and effective vaccines, the mortality rates remain high1. Streptococcus pneumoniae is the leading pathogen of community-acquired pneumonia (CAP) and one of the most common causes of bacteremia in humans. This pathogen is equipped with an armamentarium of surface-exposed adhesins and virulence factors contributing to pneumonia and invasive pneumococcal disease (IPD). The assessment of the in vivo role of bacterial fitness or virulence factors is of utmost importance to unravel S. pneumoniae pathogenicity mechanisms. Murine models of pneumonia, bacteremia, and meningitis are being used to determine the impact of pneumococcal factors at different stages of the infection. Here we describe a protocol to monitor in real-time pneumococcal dissemination in mice after intranasal or intraperitoneal infections with bioluminescent bacteria. The results show the multiplication and dissemination of pneumococci in the lower respiratory tract and blood, which can be visualized and evaluated using an imaging system and the accompanying analysis software.  相似文献   

20.
Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD) 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2 -/-) and wild-type (Wt) alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2 -/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39), an isogenic capsule locus deletion mutant (D39Δcps) or serotype 3 S. pneumoniae (6303) via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2 -/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2 -/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2 -/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2 -/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号