首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of phosphoenolpyruvate carboxykinase (PEPCK) by glucagon was studied in primary rat hepatocyte cultures by determining the time course of the sequential events, increases in the enzyme's mRNA abundance, synthesis rate, amount and activity, and by investigating the antagonistic action of insulin on the induction by glucagon. 1. The mRNA of PEPCK was induced maximally 2-3 h after addition of 10 nM glucagon, as detected by Northern-blot analysis after hybridization with a biotinylated antisense RNA of PEPCK. 2. The synthesis rate of PEPCK increased maximally 2-3 h after application of glucagon as revealed by pansorbin-linked immunoprecipitation of [35S]methionine-labelled PEPCK. 3. The enzyme amount and activity was maximally induced 4 h after glucagon application. 4. The mRNA of PEPCK was half-maximally induced by 0.1 nM and maximally by 1 nM and 10 nM glucagon. The half-maximal induction by 0.1 nM glucagon was antagonized almost totally, and the maximal induction by 1 nM glucagon partially, while the maximal induction by 10 nM glucagon remained unaffected by 10 nM insulin. The results show that in cultured rat hepatocytes physiological concentrations of glucagon stimulated the induction of PEPCK by an increase in mRNA, that the glucagon-dependent increase in mRNA and enzyme-synthesis rate occurred in parallel and preceded the increase of enzyme amount and activity by 1-1.5 h, and that physiological levels of insulin antagonized the induction by glucagon in the physiological concentration range, with glucagon being the dominant hormone.  相似文献   

2.
3.
Isolated rat liver cells maintained in suspension culture for 4 to 5 h synthesize the gluconeogenic cytosolic enzyme phosphoenolpyruvate carboxykinase at a rate approximately 5-fold lower than the in vivo hepatic rate. Glucagon rapidly re-induces phosphoenolpyruvate carboxykinase synthesis in such cells. The rate of enzyme synthesis doubles in 40 min and plateaus at a level 6- to 13-fold higher than in control cells 120 min after glucagon addition at maximal concentration. Consistent with the presumed role of cyclic AMP as a mediator of enzyme induction, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, added simultaneously with glucagon, shifts the hormone dose-response curve 2 log units to the left. Moreover, cyclic AMP supplied exogenously to the cells mimics the inductive effect of glucagon. Total cellular RNA isolated from hepatocytes induced by glucagon contains an increased level of mRNA coding for phosphoenolpyruvate carboxykinase, as determined by translational assay. The kinetics and extent of the rise in mRNA level are adequate to explain the stimulation of enzyme synthesis. Although glucagon on its own induces a build-up of phosphoenolpyruvate carboxykinase mRNA and a commensurate stimulation of enzyme synthesis, the glucagon induction is very markedly amplified when the cells are first preincubated with dexamethasone. The glucocorticoid by itself, however, does not have any substantial effect on the level of phosphoenolpyruvate carboxykinase mRNA or on the rate of enzyme synthesis. Its role can therefore be characterized as permissive.  相似文献   

4.
In hepatocytes precultured for 24 h with dexamethasone glucagon increased phosphoenolpyruvate carboxykinase activity 3-4-fold with a half maximal activity increase at 30 pM. The half maximal effective glucagon concentration was enhanced 10-fold to 300 pM when insulin was added simultaneously. The glucagon-insulin antagonism was maximally expressed when glucagon was present at low physiological concentrations. At equimolar doses it was only in the concentration range around 0.1 nM that glucagon and insulin became powerful antagonists; at higher levels glucagon was the dominant hormone. In hepatocytes not pretreated with dexamethasone glucagon still enhanced phosphoenolpyruvate carboxykinase activity, but the half maximal effective dose raised more than 30-fold to 1 nM. The degree of stimulation, however, remained essentially unchanged. Thus dexamethasone shifted the glucagon sensitivity of the cells into the physiological concentration range; it exerted a half maximal effect at 10 nM. Dexamethasone was not required for the enzyme induction proper if the cells had been pretreated with the glucocorticoid. The amount of the glucagon-stimulated enzyme induction was dependent on the time period of cell pretreatment with dexamethasone. Glucagon enhanced enzyme activity to the same constant suboptimal level irrespective of whether cells had been pretreated with glucocorticoid for 1 or for 14 h. If cells were pretreated for more than 15 h, glucagon linearly increased enzyme activity further until the maximal value was reached after 24 h pretreatment. The glucagon-insulin antagonism and the glucagon-glucocorticoid synergism were observed at physiological hormone concentrations indicating that the interaction should be effective also in vivo. Dexamethasone does not seem to be generally permissive for the inducing action of glucagon, but rather sensitizes the cell towards lower physiological hormone concentrations.  相似文献   

5.
Acute hormonal effects on the synthesis rate of the cytosolic form of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (GTP), were investigated using rat hepatocytes maintained in short-term suspension culture. Cells were pulse-labeled with [3H]leucine or [35S]methionine and the rate of synthesis of phosphoenolpyruvate carboxykinase was estimated after immunoprecipitation of cell extracts with specific antibodies or following high-resolution two-dimensional gel electrophoresis of cell proteins. Total RNA was also extracted from cultured cells and subsequently translated in a wheat germ cell-free protein-synthesis system, in order to quantify the level of functional mRNA coding for phosphoenolpyruvate carboxykinase. Glucagon, the single most effective inducer, causes a 15--20-fold increase in the level of specific mRNA in 2 h, accompanied by a similar increase in enzyme synthesis rate. The extent of induction is further amplified about threefold when dexamethasone is added to the culture medium. The synergistic action of dexamethasone does not require pre-exposure of the cells to the glucocorticoid, but on the contrary occurs without lag upon simultaneous addition of glucagon and dexamethasone. The induction of phosphoenolpyruvate carboxykinase mRNA by glucagon is markedly depressed in hepatocytes inhibited for protein synthesis by cycloheximide. Cycloheximide-inhibited cells, however, display a considerable induction of the message after joint stimulation with dexamethasone and glucagon. Thus, the synergistic action of dexamethasone does not require concomitant protein synthesis. These data provide indirect evidence for a primary effect of the glucocorticoids on the expression of the phosphoenolpyruvate carboxykinase gene. Besides glucagon and dexamethasone, the thyroid hormones are shown to influence the rate of phosphoenolpyruvate carboxykinase synthesis in isolated liver cells. The stimulatory effect of 3,5,3'-triiodothyronine (T3) is best demonstrated as a twofold increase in relative rate of enzyme synthesis in cells supplied with T3 plus glucagon, as compared to cells challenged with glucagon alone. The effect of T3 relies on a pretranslational mechanism, as shown by a commensurate increase in functional mRNA coding for phosphoenolpyruvate carboxykinase. Dose-response experiments with T3 as well as dexamethasone demonstrate effects at very low hormone levels, consistent with a role for these hormones as physiological modulators of phosphoenolpyruvate carboxykinase expression.  相似文献   

6.
To determine the effects of adenosine on follicle-stimulating hormone (FSH)-induced differentiation, granulosa cells isolated from the ovaries of diethylstilbestrol-treated immature rats were cultured with increasing concentrations of the nucleoside and modulators of adenosine action. Although adenosine had no effect on basal granulosa cell function during 48 h of culture, concentrations of the nucleoside from 10 microM to 1 mM progressively inhibited FSH-induced responses, including progesterone production and expression of FSH and luteinizing hormone (LH) receptors. Adenosine had biphasic effects on FSH-stimulated cAMP accumulation, causing inhibition of cAMP production at 10 to 100 microM and stimulation at higher concentrations. The enhancement of cAMP production by 1 mM adenosine occurred during the first 24 h of culture, while both 100 microM and 1 mM adenosine reduced FSH-stimulated cAMP production from 24 to 48 h. The inhibitory effects of adenosine were prevented by adenosine deaminase and dipyridamole, an inhibitor of adenosine transport, and were antagonized by 1-methyl-3-isobutylxanthine. The inhibition of cAMP and progesterone production by adenosine was partially overcome when cells were washed and reincubated with forskolin, but not with FSH. Adenine, guanosine, and inosine at concentrations of 100 microM did not modify FSH-induced cAMP formation or LH receptor induction. These results indicate that adenosine exerts predominantly inhibitory actions on hormone-induced granulosa cell differentiation, as manifested by prominent reductions in steroidogenesis and gonadotropin receptor expression.  相似文献   

7.
The injection of streptozotocin to 18-day-old rat fetuses induced, 2 days later, a 50% fall in plasma insulin and a twofold increase in plasma glucagon concentrations and liver cAMP levels. Phosphoenolpyruvate carboxykinase mRNA that were undetectable in the fetal rat liver, accumulated 48 h after streptozotocin injection, their concentration being 30% of that found in the liver of 1-day-old newborn rats in whom liver phosphoenolpyruvate carboxykinase gene expression is maximal. Physiological concentrations of glucagon (0.7 +/- 0.2 nM) induced, within 2 h, phosphoenolpyruvate carboxykinase mRNA accumulation in cultured hepatocytes from 20-day-old fetuses. The addition of insulin (0.01-100 nM) inhibits, by no more than 30%, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation. Exposure of fetal hepatocytes to insulin for 24 h did not change the glucagon dose/response curve and did not lead to a more efficient inhibition of the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation, despite a clear stimulatory effect on the rate of lipogenesis. In contrast, when hepatocytes were cultured in the presence of dexamethasone, the glucagon-induced phosphoenolpyruvate carboxykinase mRNA accumulation can be totally inhibited by pharmacological concentrations of insulin (10 nM). From these in-vivo and in-vitro studies, it is concluded that, under physiological conditions, the postnatal rise in plasma glucagon concentration is more important than the fall in the plasma insulin concentration for the primary induction of liver phosphoenolpyruvate carboxykinase gene expression.  相似文献   

8.
Administration of glucagon, epinephrine, or dibutyryl cAMP to chicks induced cytosol-specific phosphoenolpyruvate carboxykinase in liver. In vitro translation assay with poly(A)+RNA indicated that this induction was due to the increase in phosphoenolpyruvate carboxykinase-coding mRNA synthesis which resulted from an increased level of hepatic cAMP. Either hydrocortisone or alpha-adrenergic agonist was ineffective for the induction by itself, but showed a significant effect when administered together with one of the inducing agents given above. In particular, hydrocortisone enhanced the synthesis of phosphoenolpyruvate carboxykinase-specific mRNA without changing the profile of the time courses of the induction and of hepatic cAMP level. Those observations suggest that the fundamental machinery required for induction of cytosol-specific phosphoenolpyruvate carboxykinase in liver is shared in common between rat and chick, and that the absence of appreciable induction of cytosol-specific hepatic phosphoenolpyruvate carboxykinase in starved chicks is due to neither lack nor impairment of the hormone-mediated induction mechanism, but is due to the difference in usage of the genetic information between the two animal species.  相似文献   

9.
The effect of N6,O2'-dibutyryl cyclic adenosine monophosphate (Bt2cAMP) on the induction of the mRNA coding for the enzyme phosphoenolpyruvate carboxykinase was examined in H4-II-E cells. this mRNA comprised about 0.1% of total cellular poly(A)+RNA activity in uninduced cells and was increased 5- to 7-fold by the cyclic nucleotide. The maximal level was reached 3 h after addition of the nucleotide to the cell culture. This induction is attributed to cAMP since the nonmetabolizable analogs 8-bromocAMP and 8-(4-chlorophenylthio)cAMP produce inductions comparable to Bt2cAMP while sodium butyrate and dibutyryl cyclic GMP had little effect. The increased translational activity correlated well with a proportionate increase in the amount of phosphoenolpyruvate carboxykinase (P-enolpyruvate carboxykinase) mRNA sequences which were hybridizable to a specific cDNA probe. Blot hybridization of total nuclear RNA isolated from uninduced H4-II-E cells revealed eight P-enolpyruvate carboxykinase RNA sequence species ranging in size from 1.8 to 6.9 kilobases. Treatment with Bt2cAMP increased the amount of all eight of these forms. This increase became maximal by 45-60 min and was maintained for at least 1 h. In contrast, analysis of cytoplasmic RNA showed a single 3.2-kilobase (23 S) band, which was still increasing in amount 2 h after Bt2cAMP treatment. Thus, Bt2cAMP resulted in a sequential induction of nuclear P-enolpyruvate carboxykinase RNA sequences followed by an increase in cytoplasmic phosphoenolpyruvate carboxykinase mRNA. We conclude that cyclic AMP exerts its main effect on P-enolpyruvate carboxykinase induction at the nuclear level.  相似文献   

10.
11.
The presence of high phosphoenolpyruvate carboxykinase (EC 4.1.1.32) activity in mouse islet cytosol has been demonstrated. The enzyme was activated by Mn2+ with a Ka of 100 X 10(-6) mol/l. The mean total activity of the Mn2+-stimulated phosphoenolpyruvate carboxykinase in islet cytosol estimated at 22 degrees C with saturating concentrations of the substrates oxaloacetate and ITP was 146 pmol/min per micrograms DNA. Km was calculated to be 6 X 10(-6) mol/l for oxaloacetate and 140 X 10(-6) mol/l for ITP. The islet phosphoenolpyruvate carboxykinase activity was not increased after starvation of the animals for 48 h. Preincubation of the cytosol at 4 degrees C with Fe2+, quinolinate, ATP, Pi, glucose 6-phosphate, fructose 1,6-bisphosphate, NAD+, NADH, oxaloacetate, ITP, cyclic AMP and Ca2+ had no effect on the enzyme activity. However, preincubation of the cytosol at 37 degrees C with ATP-Mg inhibited the Mn2+-stimulated phosphoenolpyruvate carboxykinase activity progressively with time and in a concentration-dependent manner. A similar but weaker inhibitory effect was observed with p[NH]ppA, whereas p[CH2]ppA, ADP, AMP, adenosine and Pi had no effect. It is tentatively suggested that ATP and p[NH]ppA either by adenylation or otherwise affect the interaction between islet phosphoenolpyruvate carboxykinase and the recently discovered Mr = 29000 protein modulator of the enzyme in such a way - perhaps by causing a dissociation between them - that phosphoenolpyruvate carboxykinase loses its sensitivity to Mn2+ activation.  相似文献   

12.
Adult rat hepatocytes were kept in primary culture for 48 h under different hormonal conditions to induce an enzyme pattern which with respect to carbohydrate metabolism approximated that of periportal and perivenous hepatocytes in vivo. 1. Glucagon-treated cells compared with control cells possessed a lower activity of glucokinase, a 4.5-fold higher activity of phosphoenolpyruvate carboxykinase and unchanged levels of glucose-6-phosphatase, phosphofructokinase, fructose-bisphosphatase and pyruvate kinase; they resembled in a first approximation the periportal cell type and are called for simplicity 'periportal'. Inversely, insulin-treated cells compared with control cells contained a 2.2-fold higher activity of glucokinase, a slightly decreased activity of phosphoenolpyruvate carboxykinase, increased activities of phosphofructokinase and pyruvate kinase and unaltered levels of glucose-6-phosphatase and fructose-bisphosphatase; they resembled perivenous cells and are called simply 'perivenous'. Gluconeogenesis and glycolysis were studied under various substrate and hormone concentrations. 2. Physiological concentrations of glucose (5 mM) and lactate (2 mM) gave about 80% saturation of gluconeogenesis from lactate and less than 15% saturation of glycolysis at a simultaneous 40% inhibition of the glycolytic rate by lactate. 3. Comparison of the two cell types showed that under identical assay conditions (5 mM glucose, 2 mM lactate, 0.5 nM insulin, 0.1 muM dexamethasone) gluconeogenesis was 1.5-fold faster in the 'periportal' cells and glycolysis was 2.4-fold faster in the 'perivenous' cells. 4. Metabolic rates were under short-term hormonal control. Insulin increased glycolysis three fold in both cell types with a half-maximal effect at about 0.4 nM, but did not influence the gluconeogenic rate. Glucagon inhibited glycolysis by 70% with a half-maximal effect at about 0.1 nM. Gluconeogenesis was stimulated by glucagon (half-maximal dose: 0.5 nM) 1.8-fold only in 'periportal' cells containing high phosphoenolpyruvate carboxykinase activity, not in the 'perivenous' cells with a low level of this enzyme. 5. A comparison of the two cell types showed that with maximally stimulating hormone concentrations gluconeogenesis was threefold faster in 'periportal' cells and glycolysis was eightfold faster in 'perivenous' cells. The results support the view that periportal and perivenous hepatocytes in vivo catalyse gluconeogenesis and glycolysis at inverse rates.  相似文献   

13.
1. Epididymal adipose tissue from the rat was maintained in culture for periods of up to 96h. 2. After an initial decrease in protein synthesis during the first 24h of culture, the adipose tissue recovered its capacity to synthesize and accumulate proteins of a relatively large size. 3. The activity of phosphoenolpyruvate carboxykinase decreased in a parallel manner, but increased again after 24h of incubation of the tissue in culture, to a value twice that noted in the tissue in vivo. This increase in enzyme activity was due to an increase in its rate of synthesis. 4. Both insulin and dexamethasone (9alpha-fluoro-16alpha-methyl-11beta,17,-21-trihydroxypregna-1,4-diene-3,20-dione) inhibited phosphoenolpyruvate carboxykinase synthesis, but dexamethasone also decreased total protein synthesis. 5. The half-life of phosphoenolpyruvate carboxykinase in adipose tissue cultured in vitro was 5--7h and was not altered by insulin or dexamethasone. 6. It is concluded that both insulin and glucocroticoids lower the activity of phosphoenolpyruvate carboxykinase in rat adipose tissue by decreasing its rate of synthesis.  相似文献   

14.
The effect of adenosine in insulin secretion and adenylate cyclase activity of rat islets of Langerhans was investigated. Adenosine inhibited insulin secretion stimulated by glucose, glucagon, prostaglandin E2, tolbutamine and theophylline. Adenosine decreased basal adenylate cyclase activity of the islets as well as that stimulated by glucagon prostaglandin E2 and GTP, although fluoride-stimulated activity was not affected. Neither insulin secretion nor adenylate cyclase activity of the islets was affected by adenine, AMP or ADP. The inhibitory effect of adenosine on adenylate cyclase activity was not altered by either phenoxybenzamine (alpha-adrenergic blocker) or propranolol (beta-adrenergic blocker), suggesting that the effect is not mediated through the adrenergic receptors of the islet cells. These results suggest that the intracellular concentration of adenosine in the beta-cell may play a role in regulating insulin secretion and that this effect may be mediated via alterations in the activity of adenylate cyclase in the beta-cell.  相似文献   

15.
The different endowment with key enzymes and thus different metabolic capacities of periportal and perivenous cell types led to the model of "metabolic zonation." The periportal and perivenous hepatocytes receive different signals owing to the decrease of substrate concentrations including O2 and hormone levels during passage of blood through the liver sinusoids. These different signal patterns should be important for the short-term regulation of metabolism and also for the long-term induction and maintenance of the different enzyme pathways by control of gene expression. The periportal to perivenous drop in oxygen tension was considered to be a key regulator in the zonated expression of carbohydrate-metabolizing enzymes. In primary hepatocyte cultures, glucagon activated the phosphoenolpyruvate carboxykinase (PCK) gene to higher levels under arterial than under venous oxygen. The insulin-dependent activation of the glucokinase (GK) gene was reciprocally modulated by oxygen. Exogenously added hydrogen peroxide mimicked the effects of arterial oxygen on both the glucagon-dependent PCK gene and the insulin-dependent GK activation. Therefore, the oxygen sensor could be a hydrogen peroxide-producing oxidase which could contain a heme group for "measuring" the O2 tension. This notion was corroborated by the finding that CO mimicked the positive effect of O2 on PCK gene activation. Transfection of PCK promoter-CAT gene constructs into primary hepatocytes showed that the oxygen modulation of the PCK gene activation occurred in the region -281/+69. The modulation by O2 was not mediated by isolated cAMP-responsive elements. Nuclear protein extracts prepared from hepatocytes cultured under venous Po2 as compared to arterial Po2 showed an enhanced binding activity to the promoter fragment -149/-43. Oxidative conditions such as H2O2 reduced the DNA-binding activity, thus supporting the role of H2O2 as a mediator in the O2 response of the PCK and GK genes.  相似文献   

16.
Rat liver cytosolic phosphoenolpyruvate carboxykinase is inactivated by incubation with 0.84 mM 5′-p-fluorosulfonylbenzoyl guanosine, but is not appreciably affected by the adenosine analogue, 5′-p-fluorosulfonylbenzoyl adenosine, in correspondance with the known nucleotide specificity of this enzyme. Marked protection against inactivation by 5′-p-fluorosulfonylbenzoyl guanosine is provided (either in the presence or absence of divalent metal cation) by GTP or GDP but not by ATP or phosphoenolpyruvate. The inactivation appears to be due to covalent reaction since radioactive reagent remains associated with the enzyme after extensive dialysis and gel filtration on Sephadex G-25. These results are consistent with affinity labeling of the nucleotide binding site of phosphoenolpyruvate carboxykinase by the guanosine nucleotide analogue 5′-p-fluorosulfonylbenzoyl guanosine.  相似文献   

17.
Transforming growth factor β1 (TGFβ1) elevated the phosphoenolpyruvate carboxykinase (PEPCK) mRNA abundance in primary cultures of rat hepatocytes. Although this increase was not as large as the rise in PEPCK gene expression induced by the cAMP-elevating agents glucagon or isoproterenol, the effect of TGFβ1 was several-fold and concentration-dependent, with ED50 at about 2.5 pM, which is in the same concentration range as the previously found growth-inhibitory effect of TGFβ. The data show that the level of mRNA for PEPCK, an enzyme typically expressed in the liver, can be regulated in the same direction by TGFβ1 and cAMP.  相似文献   

18.
19.
The effects of triamcinolone on renal and hepatic phosphoenolpyruvate carboxykinase activity in the developing rat were investigated. The hormone induced increases in pre-existing enzyme activity of both tissues in fetal and neonatal rats, yet did not cause the primary appearance of phosphoenolpyruvate carboxykinase activity in utero. Neonatal hepatic phosphoenolpyruvate carboxykinase activity was increased 2--3 fold by triamcinolone form the 3rd to the 15th postnatal day. This was shown to be additive to the effect of Bt2cAMP on enzyme activity. The increases in phosphoenolpyruvate carboxykinase activity were demonstrated to be due to increased synthesis of the enzyme, which was accompanied by a proportionate increase in the amount of functional phosphoenolpyruvate carboxykinase mRNA, as measured by the polyribosomal and poly(A)-containing RNA directed cell-free synthesis of the enzyme. The demonstration of a triamcinolone effect on kidney and liver phosphoenolpyruvate carboxykinase activity in fetal and neonatal rats provides support for a possible role of glucocorticoids in the regulation of phosphoenolpyruvate carboxykinase activity during development.  相似文献   

20.
The effects of insulin and glucagon on glycogen metabolism were studied in cultured fetal hepatocytes transplanted from 15-day-old fetuses. The effects of these hormones were examined just after transplantation, when the cells contained only minute amounts of glycogen, and during the 3 to 4 day culture period, when the hepatocytes were exposed to 10 muM cortisol and actively accumulated glycogen. At all stages of the culture, glucagon addition (10 nM) was followed by a rapid depletion of labeled glycogen, previously synthesized during a pulse labeling with [14C]glucose: this effect was mimicked by N6, O2'-dibutyryl adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) (0.3 to 1 nM). Such a glycogenolytic effect of glucagon was observed even 6 hours after transplantation, i.e. at a time when cortisol was not present. In addition, glucagon clearly induced cyclic adenosine 3':5'-monosphosphate (cyclic AMP) accumulation in cells grown for 18 hours in the absence of cortisol. With cells grown for 3 days in the presence of cortisol, glucagon-dependent glycogenolysis was also obtained when cortisol was removed from the medium 20 hours before hormone addition. Thus the presence of cortisol is not necessary either to maintain a response to glucagon or for the onset of the glycogenolytic effect of glucagon. Insulin addition (10 nM) stimulated [14C]glucose incorporation into glycogen at all stages of the culture when grown in the presence of cortisol; no glycogenic response to insulin was observed 6 hours after transplantation where cortisol was not previously introduced. In addition, if the hepatocytes were grown in the presence of insulin alone (i.e. in the absence of cortisol) no significant storage of glycogen occurred. Maximal storage (or labeling) of glycogen was observed when hepatocytes were grown in the presence of both cortisol and insulin. The presence of cortisol was therefore necessary for the expression of the glycogenic effect of insulin. These data show that marked difference exist between the onset of developmental responses towards glucagon and insulin. The glucagon-dependent regulatory pathway should be present very early in fetal development and should not depend on cortisol. On the contrary, the onset of the insulin-dependent regulatory pathway seems to be induced during culture, and it is likely that this is caused by cortisol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号