首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Special search for frameshift mutations, which are suppressed by the cytoplasmic [PSI] factor and by omnipotent nonsense suppressors (recessive mutations in theSUP35and SUP45genes), partially inactivating a translation termination complex, was initiated in theLYS2gene in the yeast Saccharomyces cerevisiae.Mutations were obtained after exposure to UV light and treatment with a mixture of 1,6- and 1,8-dinitropyrene (DNP). This mixture was shown to induce mutations of the frameshift type with a high frequency. The majority of these mutations were insertions of one A or T, which is in good agreement with the data obtained in studies of DNP-induced mutagenesis in other eukaryotes. Frameshift suppression was shown on the example of the mutation obtained in this work (lys2-90), which carried the insertion of an extra T in the sequence of five T. This frameshift suppression was first shown to occur in the presence of the [PSI] factor (i.e., due to the prionization of the translation release factor eRF3) and as a result of mutations in genes SUP35orSUP45, which partially inactivate translation termination factors eRF3 and eRF1, respectively. Alternative mechanisms of programmed translational frameshifting in the course of translation and the possibility of enhancing the effectiveness of such frameshifting in the presence of the [PSI] factor are considered.  相似文献   

2.
Two herbicide-resistant strains of the cyanobacterium Synechococcus sp. PCC 7002 are compared to the wild-type with respect to the DNA changes which result in herbicide resstance. The mutations have previously been mapped to a region of the cyanobacterial genome which encodes oneof three copies of psbA, the gene which encodes the 32 kDa Qb-binding protein also known as D1 (Buzby et al. 1987). The DNA sequence of the wild-type gene was first determined and used as a comparison to that of the mutant alleles. A point mutation at codon 211 in the psbA1 coding locus (TTC) to TCC) results in an amino acid change from phenylalanine to serine in the D1 protein. This mutation confers resistance to atrazine and diuron at seven times and at two times the minimal inhibitory concentration (MIC) for the wild-type, respectively. A mutation at codon 211 resulting in herbicide resistance has not previously been described in the literature. A second point mutation at codon 219 in the psbA1 coding locus (GTA to ATA) results in an amino acid change from valine to isoleucine in the D1 protein. This mutation confers resistance to diuron and atrazine at ten times and at two times the MIC for the wild-type, respectively. An identical codon change conferring similar herbicide resistance patterns has previously been described in Chlamydomonas reinhardtii. The atrazine-resistance phenotype in Synechococcus sp. PCC 7002 was shown to be dominant by plasmid segregation analysis.Abbreviations At r atrazine resistance - Du r diuron resistance - Km r kanamycin resistance - Ap r ampicillin resistance - MIC Minimum inhibitory concentration  相似文献   

3.
A mutation shown to cause resistance to chloramphenicol inSaccharomyces cerevisiae was mapped to the central loop in domain V of the yeast mitochondrial 21S rRNA. The mutant 21S rRNA has a base pair exchange from U2677 (corresponding to U2504 inEscherichia coli) to C2677, which significantly reduces rightward frameshifting at a UU UUU UCC A site in a + 1 U mutant. There is evidence to suggest that this reduction also applies to leftward frameshifting at the same site in a – 1 U mutant. The mutation did not increase the rate of misreading of a number of mitochondrial missense, nonsense or frameshift (of both signs) mutations, and did not adversely affect the synthesis of wild-type mitochondrial gene products. It is suggested here that ribosomes bearing either the C2677 mutation or its wild-type allele may behave identically during normal decoding and only differ at sites where a ribosomal stall, by permitting non-standard decoding, differentially affects the normal interaction of tRNAs with the chloramphenicol resistant domain V. Chloramphenicol-resistant mutations mapping at two other sites in domain V are described. These mutations had no effect on frameshifting.  相似文献   

4.
Summary A 1.7 Kbp EcoRI fragment of Nicotiana tabacum chloroplast DNA cloned in YIp5, consisting of pBR322 and the yeast ura3 gene, possessed ars (autonomously replicating sequences) activity in Saccharomyces cerevisiae. This fragment was located in the small single copy region proximal to the 23S rRNA gene.Sequences responsible for potential ars activity were narrowed to about 350 base pairs, where clusters of nucleotides similar to a consensus sequence (11 bp) essential for several yeast ars (Broach et al. 1982), to the stem-and-loop structure typical of yeast ars3 (Feldmann et al. 1981), and regions surrounding the replication origin of mitochondrial DNAs of HeLa Cells (Crews et al. 1979) and yeast (de Zamaroczy et al. 1981) can be observed.Abbreviations ctDNA chloroplast DNA - Kbp kilobase pairs  相似文献   

5.
Summary Expression of the ompF and ompC genes coding for major outer membrane proteins is osmoregulated by solutes, such as sucrose and NaCl, in the growth medium. The OmpR protein, a positive regulator of these genes, is involved in the osmoregulation (Dairi et al. 1985; Nara et al. 1984). In the present work, five mutant ompR genes exhibiting different phenotypes of osmoregulation were cloned and sequenced. Three of them, ompR1, ompR2 and ompR20, were previously isolated mutants. The others, ompR3 and ompR4, were isolated in the present work. The ompR1 mutation resulted in the deletion of 19 amino acids near the C-terminus of the OmpR protein. The ompR3 and ompR4 mutations resulted in Arg15 to Cys and Arg71 to Thr conversions, respectively, at the N-terminal portion, whereas the ompR20 and ompR2 mutations resulted in Arg150 to Cys and Val207 to Met conversions, respectively, at the C-terminal portion. Based on these results, the structure and function of the OmpR protein are discussed in relation to the mechanism of osmoregulation.Abbreviations Tcr tetracycline resistance - Smr streptomycin resistance - Cmr chloramphenicol resistance - Kmr kanamycin resistance - SDS sodium dodecyl sulphate  相似文献   

6.
Thepar region of pSC101, required incis to promote its stable inheritance, was joined, in combination with thetetr determinant of pBR325, to large and small minichromosomes. These hybrid minichromosomes were examined for stability and found to be no more stable than their parent minichromosomes. Indeed, one recombinant plasmid, pEH21, showed reduced stability, which was not attributable to a reduced copy number. Neither pEH21 nor pEH22, a plasmid composed of the same DNA arranged differently, was stabilized by the presence of a Par+ pSC101 derived replicon in the same cell. We conclude that thepar region of pSC101 does not stabilize minichromosomes.  相似文献   

7.
Summary An examination of the effect of the aminoglycoside antibiotics paromomycin and neomycin on mitochondrial ribosome function in yeast has been made. Both antibiotics are potent inhibitors of protein synthesis in isolated mitochondria. With isolated mitochondrial ribosomes programmed with polyuridylic acid (poly U), the drugs are shown to inhibit polyphenylalanine synthesis at moderately high concentrations (above 100 g/ml). At lower concentrations (about 10 g/ml), paromomycin and neomycin cause a 2–3 fold stimulation in the extent of misreading of the UUU codons in poly U, over and above the significant level of misreading catalyzed by the ribosomes in the absence of drugs.Comparative studies have been made between a paromomycin sensitive strain D585-11C and a mutant strain 4810P carrying the parl-r mutation in mtDNA, which leads tohigh resistance to both paromomycin and neomycin in vivo. A high level of resistance to these antibiotics is observed in strain 4810P at the level of mitochondrial protein synthesis in vitro. Whilst the degree of resistance of isolated mitochondrial ribosomes from strain 4810P judged by the inhibition of polyphenylalanine synthesis by paromomycin and neomycin is not extensive, studies on misreading of the poly U message promoted by these drugs demonstrate convincingly the altered properties of mitochondrial ribosomes from the mutant strain 4810P. These ribosomes show resistance to the stimulation of misreading of the codon UUU brought about by paromomycin and neomycin in wild-type mitochondrial ribosomes. Although strain 4810P was originally isolated as being resistant to paromomycin, in all the in vitro amino acid incorporation systems tested here, the 4810P mitochondrial ribosomes show a higher degree of resistance to neomycin than to paromomycin.It is concluded that the parl-r mutation in strain 4810P affects a component of the mitochondrial ribosome, possibly by altering the 15S rRNA or a protein of the small ribosomal subunit. The further elucidation of the functions in the ribosomes that are modified by the parl-r mutation was hampered by the inability of current preparations of yeast mitochondrial ribosomes to translate efficiently natural messenger RNAs from the several sources tested.  相似文献   

8.
Glutathione is essential for protecting plants from a range of environmental stresses, including heavy metals where it acts as a precursor for the synthesis of phytochelatins. A 1658 bp cDNA clone for glutathione synthetase (gsh2) was isolated fromArabidopsis thaliana plants that were actively synthesizing glutathione upon exposure to cadmium. The sequence of the clone revealed a protein with an estimated molecular mass of 53858 Da that was very similar to the protein from higher eukaryotes, was less similar to the gene from the fission yeast,Schizosaccharomyces pombe, and shared only a small region of similarity with theEscherichia coli protein. A 4.3 kbSstI fragment containing the genomic clone for glutathione synthetase was also isolated and sequenced. A comparison of the cDNA and genomic sequences revealed that the gene was composed of twelve exons.When theArabidopsis cDNA cloned in a special shuttle vector was expressed in aS. pombe mutant deficient in glutathione synthetase activity, the plant cDNA was able to complement the yeast mutation. Glutathione synthetase activity was measurable in wild-type yeast cells, below detectable levels in thegsh2 - mutant, and restored to substantial levels by the expression of theArabidopsis cDNA. TheS. pombe mutant expressing the plant cDNA had near wild type levels of total cellular thiols,109Cd2+ binding activity, and cadmium resistance. Since theArabidopsis cDNA was under control of a thiamine-repressible promoter, growth of the transformed yeast on thiamine-free medium increased expression of the cDNA resulting in increases in cadmium resistance.  相似文献   

9.
Summary Suppression of a dnaA46 mutation by integration of plasmid R100.1 derivatives in the termination region of chromosome replication in E. coli results in medium dependence, the suppressed bacteria being sensitive to rich medium at 42° C. Derivatives of such bacteria have been selected for growth at 42° C in rich medium and we have analyzed representatives of the most frequently observed type: bacteria displaying, once cured of the suppressor plasmid, both rich-medium sensitivity and temperature sensitivity. We found, in all cases, that the chromosome had undergone a major inversion event between two inverted IS5's. One is located at 29.2 min on the chromosome map and the other at either one of two positions between 69 and 80 min. The consequences of such inversions for cell growth are discussed. Some of them result from the fact that the replication terminator T2 is located, in inverted chromosomes, close to oriC in the orientation which allows its functioning as a terminus (de Massy et al. in press). Our observations allow an estimation of the frequency of inversions arising from recombination between pairs of inverted chromosomal IS, which could be as high as 10-2 per cell per generation. We also found that inversion reversal occurs frequently after Hfr conjugational transfer of one of the IS5's, in its wild-type location. This led us to propose a new mechanisms of recombination, in which the incoming DNA strands serve as guides to favor recombination between the resident sequences.Abbreviations Sin suppresive integration - Rms/Rmr rich medium sensitivity/resistance - Ts/Tr temperature sensitivity/resistance - Apr ampicillin resistance - Nalr nalidixic acid resistance - Spr spectinomycin resistance - Str streptomycin resistance - Tcr tetracycline resistance  相似文献   

10.
A 15-17 nucleotide sequence from the gag-pol ribosome frameshift site of HIV-1 directs analogous ribosomal frameshifting in Escherichia coli. Limitation for leucine, which is encoded precisely at the frameshift site, dramatically increased the frequency of leftward frameshifting. Limitation for phenylaianine or arginine, which are encoded just before and just after the frameshift, did not significantly affect frameshifting. Protein sequence analysis demonstrated the occurrence of two closeiy related frameshift mechanisms. In the first, ribosomes appear to bind leucyl-tRNA at the frameshift site and then slip leftward. This is the 'simultaneous slippage’mechanism. In the second, ribosomes appear to slip before binding amlnoacyl-tRNA, and then bind phenylaianyl-tRNA, which is encoded in the left-shifted reading frame. This mechanism is identicai to the‘overlapping reading’we have demonstrated at other bacterial frameshift sites. The HIV-1 sequence is prone to frame-shifting by both mechanisms in E. coli.  相似文献   

11.
Summary A DNA fragment conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae was isolated from a library of yeast genomic DNA. Its nucleotide sequence revealed the presence of a single open reading frame (ORF; 1326 bp) having the potential to encode a protein of 442 amino acid residues (molecular mass of 48.3 kDa). A frameshift mutation introduced within the ORF abolished resistance to heavy metal ions, indicating the ORF is required for resistance. Therefore, we termed it the ZRC1 (zinc resistance conferring) gene. The deduced amino acid sequence of the gene product predicts a rather hydrophobic protein with six possible membrane-spanning regions. While multiple copies of the ZRC1 gene enable yeast cells to grow in the presence of 40 mM Zn2+, a level at which wild-type cells cannot survive, the disruption of the chromosomal ZRC1 locus, though not a lethal event, makes cells more sensitive to zinc ions than are wild-type cells.  相似文献   

12.
Summary Escherichia coli cells, carrying plasmid pRD1 with (a) drug resistance markers from Pseudomonas (kmr, carbr, tcr) and (b) the nif-gene group from Klebsiella, were incubated together with Bacillus subtilis cells (strr), whose cell wall had been disintegrated with lysozyme. Upon plating the cell mixtures onto appropriately supplemented selective medium, multiple drug resistant Bacillus subtilis cells were obtained. Their nature was verified by suitable biochemical tests and checking for the presence of additional genetic markers. The majority of the isolates was unstable. Some however retained multiple drug resistance for longer periods of time, and several produced nitrogenase activity. The data are interpreted as evidence not only for the transfer of the respective genes but also for their expression in the gram-positive recipient cells.Abbreviations pRD1 a hybrid plasmid, renamed by Ray Dixon - pRP4 plasmid from Pseudomonas, originally described by Datta et al., J. Bacteriol 108, 1244 (1971) - km r, carb r, tc r, str r resistance against kanamycin, carbenicillin, tetracyclin and streptomycin, respectively - r restriction negative. For other bacterial markers refer to Bachmann, B.J. et al., Bacteriological Reviews 40, 116 (1976)  相似文献   

13.
14.
Y Cui  J D Dinman    S W Peltz 《The EMBO journal》1996,15(20):5726-5736
The mof4-1 (maintenance of frame) allele in the yeast Saccharomyces cerevisiae was isolated as a chromosomal mutation that increased the efficiency of -1 ribosomal frameshifting at the L-A virus frameshift site and caused loss of M1, the satellite virus of L-A. Here, we demonstrate that strains harboring the mof4-1 allele inactivated the nonsense-mediated mRNA decay pathway. The MOF4 gene was shown to be allelic to UPF1, a gene whose product is involved in the nonsense-mediated mRNA decay pathway. Although cells harboring the mof4-1 allele of the UPF1 gene lose the M1 virus, mutations in other UPF genes involved in nonsense-mediated mRNA decay maintain the M1 virus. The mof4-1 strain is more sensitive to the aminoglycoside antibiotic paromomycin than a upf1 delta strain, and frameshifting efficiency increases in a mof4-1 strain grown in the presence of this drug. Further, the ifs1 and ifs2 alleles previously identified as mutations that enhance frameshifting were shown to be allelic to the UPF2 and UPF1 genes, respectively, and both ifs strains maintained M1. These results indicate that mof4-1 is a unique allele of the UPF1 gene and that the gene product of the mof4-1 allele affects both -1 ribosomal frameshifting and mRNA turnover.  相似文献   

15.
A gene, zam (for resistance to acetazolamide), controlling resistance to the carbonic anhydrase inhibitor acetazolamide, is described. It has been cloned from a spontaneous mutant, AZAr-5b, isolated from the cyanobacterium Synechocystis PCC 6803, for its resistance to this drug (Bédu et al., Plant Physiol 93: 1312–1315, 1990). This mutant, besides its resistance to acetazolamide, displayed an absence of catalysed oxygen exchange activity on whole cells, suggestive of a deficiency in carbonic anhydrase activity. The gene was isolated by screening a genomic library of AZAr-5b, and selecting for the capacity to transfer the AZAr phenotype to wild-type cells. A system leading to forced homologous recombination in the host chromosome, using a platform vector, was devised in order to bypass direct selection difficulties. The putative encoded protein, 782 amino acids long, showed some homology with four eukaryotic and prokaryotic proteins involved in different cellular processes, one of them suppressing a phosphatase deficiency. The mutated allele of AZAr-5b showed an in-frame 12 nucleotide duplication, which should not interfere with translation, and might result from transposition of a mobile element. Integration into a wild-type genome of either the spontaneous mutated allele or one inactivated by insertional mutagenesis conferred the character of resistance, but not the deficiency in oxygen exchange, indicating that the two phenotypic aspects of AZAr-5b corresponded to two independent mutations. A working hypothesis explaining the phenotypes of the mutants is that the presence of the Zam protein would be necessary for the inhibitor to reach (one of) the two carbonic anhydrases present in this strain. This, however, would be a secondary action, the physiological role of the protein still being cryptic.  相似文献   

16.
A theoretical as well as an experimental study of the effect of the partitioning system on plasmid R1drd-19 incompatibility was performed. The theoretical numerical analysis (by computer) was based upon the following assumptions: (i) The partitioning (par) mechanism is independent of the replication (rep) and replication control (cop) mechanism. (ii) A par mutation causes random (binomial) distribution of plasmid copies between the daughter cells at cell division. (iii) In the par+ case, the plasmid copies are equipartitioned and selected randomly for partitioning. (iv) Selection of plasmid copies for replication is random. (v) Two different replication control systems were considered: Model 1 assumes that the plasmid copy number is set to exactly 2n before cell division, whereas in Model 2 exactly n copies are synthesized per cell per cell cycle. Numerical analysis was performed for the n values 2–8. The result was that in all cases (par+/par+, par+/par, par/par), steady states with respect to copy number distribution within the heteroplasmid population were rapidly (within five or six generations) established, giving constant loss rates. The rate of loss was slightly higher in the par/par case than in the other two. The two replication control models gave almost identical loss rates. In the par+/par case, the par+ plasmid had an advantage over the par plasmid. The experimental approach was to create heteroplasmid populations of Escherichia coli by introducing two genetically marked derivatives of plasmid R1drd-19 and then follow the reduction in the relative size of this population during exponential growth in LB medium. The loss rate was essentially the same in the par+/par+ and par+/par combination and slightly higher in the par/par case, suggesting that plasmid incompatibility mainly is caused by the replication and copy number control system. In the par+/par situation, the par+ plasmid had a pronounced advantage over the par plasmid. The par region of plasmid R1 (without the basic replicon) was cloned onto the vector pSF2124. A par (deletion) mutation was not complemented by par+. Plasmid pSF2124, which does not seem to carry a par system of its own, could use the R1 par system, adding to the conclusion that par is independent of rep and cop. Plasmids pSF2124 and R1drd-19 are completely compatible, whereas plasmid pSF2124 carrying the R1 par system and plasmid R1drd-19 showed a weak incompatibility although the copy numbers of the two plasmids were not affected in the heteroplasmid cells. Hence, the partitioning system causes incompatibility, but the effect is weak compared to that of the cop system. The result is consistent with some sort of assortment of plasmids before partitioning.  相似文献   

17.
Summary The Escherichia coli Tn9 derived chloramphenicol resistance gene (cam r) is functionally expressed in the yeast Saccharomyces cerevisiae. This gene was introduced into yeast cells as part of a hybrid yeast/E. coli shuttle plasmid. A number of plasmid associated yeast mutants overproducing the cam r gene product, chloramphenicol acetyltransferase (acetyl-CoA: chloramphenicol 3-0-acetyltransferase, E.C. 2.3.1.28) were isolated. One of the plasmid mutants was analyzed in some detail. Even though this mutant showed a 1,000 fold overproduction of chloramphenicol acetyltransferase in the yeast host the level of RNA complementary to the cam r gene was not increased. A deletion of 127 base pairs in the region immediately upstream from the 5 end of the cam r gene appeared to be responsible for the up phenotype of this mutant. This mutation affected the expression of the cam r gene in E. coli in a down fashion, in contrast to its effect in yeast.  相似文献   

18.
Twelve of 30 species examined in the ant genus Polyrhachis carry single nucleotide insertions at one or two positions within the mitochondrial cytochrome b (cytb) gene. Two of the sites are present in more than one species. Nucleotide substitutions in taxa carrying insertions show the strong codon position bias expected of functional protein coding genes, with substitutions concentrated in the third positions of the original reading frame. This pattern of evolution of the sequences strongly suggests that they are functional cytb sequences. This result is not the first report of +1 frameshift insertions in animal mitochondrial genes. A similar site was discovered in vertebrates, where single nucleotide frameshift insertions in many birds and a turtle were reported by Mindell et al. (Mol Biol Evol 15:1568, 1998). They hypothesized that the genes are correctly decoded by a programmed frameshift during translation. The discovery of four additional sites gives us the opportunity to look for common features that may explain how programmed frameshifts can arise. The common feature appears to be the presence of two consecutive rare codons at the insertion site. We hypothesize that the second of these codons is not efficiently translated, causing a pause in the translation process. During the stall the weak wobble pairing of the tRNA bound in the peptidyl site of the ribosome, together with an exact Watson–Crick codon–anticodon pairing in the +1 position, allows translation to continue in the +1 reading frame. The result of these events is an adequate level of translation of a full-length and fully functional protein. A model is presented for decoding of these mitochondrial genes, consistent with known features of programmed translational frameshifting in the yeast TY1 and TY3 retrotransposons.Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

19.
A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal   总被引:2,自引:1,他引:1  
A wide range of RNA viruses use programmed −1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed −1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the presence of an mRNA pseudoknot containing three double-stranded RNA stem structures rather than two. Phylogenetic analyses showed the conservation of potential three-stemmed pseudoknots in the frameshift signals of all other coronaviruses in the GenBank database. Though the presence of the three-stemmed structure is supported by nuclease mapping and two-dimensional nuclear magnetic resonance studies, our findings suggest that interactions between the stem structures may result in local distortions in the A-form RNA. These distortions are particularly evident in the vicinity of predicted A-bulges in stems 2 and 3. In vitro and in vivo frameshifting assays showed that the SARS-CoV frameshift signal is functionally similar to other viral frameshift signals: it promotes efficient frameshifting in all of the standard assay systems, and it is sensitive to a drug and a genetic mutation that are known to affect frameshifting efficiency of a yeast virus. Mutagenesis studies reveal that both the specific sequences and structures of stems 2 and 3 are important for efficient frameshifting. We have identified a new RNA structural motif that is capable of promoting efficient programmed ribosomal frameshifting. The high degree of conservation of three-stemmed mRNA pseudoknot structures among the coronaviruses suggests that this presents a novel target for antiviral therapeutics.  相似文献   

20.
Programmed −1 ribosomal frameshifting is utilized by a number of RNA viruses as a means of ensuring the correct ratio of viral structural to enzymatic proteins available for viral particle assembly. Altering frameshifting efficiencies upsets this ratio, interfering with virus propagation. We have previously demonstrated that compounds that alter the kinetics of the peptidyl-transfer reaction affect programmed −1 ribosomal frameshift efficiencies and interfere with viral propagation in yeast. Here, the use of a genetic approach lends further support to the hypothesis that alterations affecting the ribosome’s peptidyltransferase activity lead to changes in frameshifting efficiency and virus loss. Mutations in the RPL3 gene, which encodes a ribosomal protein located at the peptidyltransferase center, promote approximately three- to fourfold increases in programmed −1 ribosomal frameshift efficiencies and loss of the M1 killer virus of yeast. The mak8-1 allele of RPL3 contains two adjacent missense mutations which are predicted to structurally alter the Mak8-1p. Furthermore, a second allele that encodes the N-terminal 100 amino acids of L3 (called L3Δ) exerts a trans-dominant effect on programmed −1 ribosomal frameshifting and killer virus maintenance. Taken together, these results support the hypothesis that alterations in the peptidyltransferase center affect programmed −1 ribosomal frameshifting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号