首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We report here the construction and analysis of insertional mutations in each of the three genes of the gltBDF operon and the nucleotide sequence of the region downstream from gltD. Two open reading frames were identified, the first of which corresponds to gltF. The gltB and gltD genes code for the large and small subunits, respectively, of the enzyme glutamate synthase (GOGAT). gltF codes for a protein, with a molecular mass of 26,350 Da, which is required for Ntr induction. Histidase synthesis was determined as a measure of Ntr function. First, insertions in gltB, gltD or gltF all prevent Ntr induction. Second, complementation analysis indicates that high-level expression of both the gltD and gltF genes is required for the induction of the Ntr enzymes under nitrogen-limiting conditions, indicating that the phenotype of the gltB insertion probably results from polarity on gltD and gltF. Third, glutamate-dependent repression of the glt operon appears to be mediated by the product of the gltF gene. Thus, the gltBDF operon of Escherichia coli is involved in induction of the so-called Ntr enzymes in response to nitrogen deprivation, as well as in glutamate biosynthesis.  相似文献   

2.
3.
gltBDF operon of Escherichia coli.   总被引:14,自引:10,他引:4       下载免费PDF全文
A 2.0-kilobase DNA fragment carrying antibiotic resistance markers was inserted into the gltB gene of Escherichia coli previously cloned in a multicopy plasmid. Replacement of the chromosomal gltB+ gene by the gltB225::omega mutation led to cells unable to synthesize glutamate synthase, utilize growth rate-limiting nitrogen sources, or derepress their glutamine synthetase. The existence of a gltBDF operon encoding the large (gltB) and small (gltD) subunits of glutamate synthase and a regulatory peptide (gltF) at 69 min of the E. coli linkage map was deduced from complementation analysis. A plasmid carrying the entire gltB+D+F+ operon complemented cells for all three of the mutant phenotypes associated with the polar gltB225::omega mutation in the chromosome. By contrast, plasmids carrying gltB+ only complemented cells for glutamate synthase activity. A major tricistronic mRNA molecule was detected from Northern (RNA blot) DNA-RNA hybridization experiments with DNA probes containing single genes of the operon. A 30,200-dalton polypeptide was identified as the gltF product, the lack of which was responsible for the inability of cells to use nitrogen-limiting sources associated with gltB225::omega.  相似文献   

4.
To contribute to the understanding of glutamate synthase and of beta subunit-like proteins, which have been detected by sequence analyses, we identified the NADPH-binding site out of the two potential ADP-binding regions found in the beta subunit. The substitution of an alanyl residue for G298 of the beta subunit of Azospirillum brasilense glutamate synthase (the second glycine in the GXGXXA fingerprint of the postulated NADPH-binding site) yielded a protein species in which the flavin environment and properties are unaltered. On the contrary, the binding of the pyridine nucleotide substrate is significantly perturbed demonstrating that the C-terminal potential ADP-binding fold of the beta subunit is indeed the NADPH-binding site of the enzyme. The major effect of the G298A substitution in the GltS beta subunit consists of an approximately 10-fold decrease of the affinity of the enzyme for pyridine nucleotides with little or no effect on the rate of the enzyme reduction by NADPH. By combining kinetic measurements and absorbance-monitored equilibrium titrations of the G298A-beta subunit mutant, we conclude that also the positioning of its nicotinamide portion into the active site is altered thus preventing the formation of a stable charge-transfer complex between reduced FAD and NADP(+). During the course of this work, the Azospirillum DNA regions flanking the gltD and gltB genes, the genes encoding the GltS beta and alpha subunits, respectively, were sequenced and analyzed. Although the Azospirillum GltS is similar to the enzyme of other bacteria, it appears that the corresponding genes differ with respect to their arrangement in the chromosome and to the composition of the glt operon: no genes corresponding to E. coli and Klebsiella aerogenes gltF or to Bacillus subtilis gltC, encoding regulatory proteins, are found in the DNA regions adjacent to that containing gltD and gltB genes in Azospirillum. Further studies are needed to determine if these findings also imply differences in the regulation of the glt genes expression in Azospirillum (a nitrogen-fixing bacterium) with respect to enteric bacteria.  相似文献   

5.
At least two pathways exist in Klebsiella aerogenes for glutamate synthesis. A mutant blocked in one pathway due to the loss of glutamate dehydrogenase (gltD) does not require glutamate and has the same growth characteristics as the parent strain in most media; however, its growth is inhibited by the analogues methionine sulfoximine and methionine sulfone. Wild-type Klebsiella is resistant to 0.1 M methionine sulfoximine or methionine sulfone, whereas the gltD mutant is sensitive to 1 mM concentrations. Either glutamate or glutamine is effective in overcoming this inhibition. Activities of both glutamine synthetase and glutamate synthetase, two enzymes involved in the second pathway of glutamate synthesis, are inhibited by methionine sulfoximine and methionine sulfone. The primary effect of methionine sulfoximine appears to be the prevention of glutamine production necessary for subsequent glutamate synthesis via glutamate synthetase enzyme.  相似文献   

6.
7.
8.
Analysis of the DNA sequence upstream of the narQ gene, which encodes the second nitrate-responsive sensor-transmitter protein in Escherichia coli, revealed an open reading frame (ORF) whose product shows a high degree of similarity to a number of iron-sulfur proteins as well as to the beta subunit of glutamate synthase (gltD) of E. coli. This ORF, located at 53.0 min on the E. coli chromosome, is divergently transcribed and is separated by 206 bp from the narQ gene. Because of the small size of the intergenic region, we reasoned that the genes may be of related function and/or regulated in a similar fashion. An aegA-lacZ gene fusion was constructed and examined in vivo; aegA expression was induced 11-fold by anaerobiosis and repressed 5-fold by nitrate. This control was mediated by the fnr, narX, narQ, and narL gene products. Analysis of an aegA mutant indicated that the aegA gene product is not essential for cell respiration or fermentation or for the utilization of ammonium or the amino acids L-alanine, L-arginine, L-glutamic acid, glycine, and DL-serine as sole nitrogen sources. The ORF was designated aegA to reflect that it is an anaerobically expressed gene. The structural properties of the predicted AegA amino acid sequence and the regulation of aegA are discussed with regard to the possible function of aegA in E. coli.  相似文献   

9.
Azospirillum brasilense glutamate synthase is a complex iron-sulfur flavoprotein that catalyses the NADPH-dependent reductive transfer of glutamine amide group to the C(2) carbon of 2-oxoglutarate to yield L-glutamate. Its catalytically active alphabeta protomer is composed of two dissimilar subunits (alpha subunit, 164.2 kDa; beta subunit, 52.3 kDa) and contains one FAD (at Site 1, the pyridine nucleotide site within the beta subunit), one FMN (at Site 2, the 2-oxoglutarate/L-glutamate site in the alpha subunit) and three different iron-sulfur clusters (one 3Fe-4S center on the alpha subunit and two 4Fe-4S clusters of unknown location). A plasmid harboring the gltD and gltB genes, the genes encoding the glutamate synthase beta and alpha subunits, respectively, each one under the control of the T7/lac promoter of pET11a was found to be suitable for the overproduction of glutamate synthase holoenzyme in Escherichia coli BL21(DE3) cells. Recombinant A. brasilense glutamate synthase could be purified to homogeneity from overproducing E. coli cells by ion exchange chromatography, gel filtration and affinity chromatography on a 2',5' ADP-Sepharose 4B column. The purified enzyme was indistinguishable from that prepared from Azospirillum cells with respect to cofactor content, N-terminal sequence of the subunits, aggregation state, kinetic and spectroscopic properties. The study of the recombinant holoenzyme allowed us to establish that the tendency of glutamate synthase to form a stable (alphabeta)4 tetramer at high protein concentrations is a property unique to the holoenzyme, as the isolated beta subunit does not oligomerize, while the isolated glutamate synthase alpha subunit only forms dimers at high protein concentrations. Furthermore, the steady-state kinetic analysis of the glutamate synthase reaction was extended to the study of the effect of adenosine-containing nucleotides. Compounds such as cAMP, AMP, ADP and ATP have no effect on the enzyme activity, while the 2'-phosphorylated analogs of AMP and NADP(H) analogs act as inhibitors of the reaction, competitive with NADPH. Thus, it can be ruled out that glutamate synthase reaction is subjected to allosteric modulation by adenosine containing (di)nucleotides, which may bind to the putative ADP-binding site at the C-terminus of the alpha subunit. At the same time, the strict requirement of a 2'-phosphate group in the pyridine nucleotide for binding to glutamate synthase (GltS) was established. Finally, by comparing the inhibition constants exhibited by a series of NADP+ analogs, the contribution to the binding energy of the various parts of the pyridine nucleotide has been determined along with the effect of substituents on the 3 position of the pyridine ring. With the exception of thio-NADP+, which binds the tightest to GltS, it appears that the size of the substituent is the factor that affects the most the interaction between the NADP(H) analog and the enzyme.  相似文献   

10.
Residues P19, L28, C31, and C32 have been implicated (Di Donato A, Cafaro V, D'Alessio G, 1994, J Biol Chem 269:17394-17396; Mazzarella L, Vitagliano L, Zagari A, 1995, Proc Natl Acad Sci USA: forthcoming) with key roles in determining the dimeric structure and the N-terminal domain swapping of seminal RNase. In an attempt to have a clearer understanding of the structural and functional significance of these residues in seminal RNase, a series of mutants of pancreatic RNase A was constructed in which one or more of the four residues were introduced into RNase A. The RNase mutants were examined for: (1) the ability to form dimers; (2) the capacity to exchange their N-terminal domains; (3) resistance to selective cleavage by subtilisin; and (4) antitumor activity. The experiments demonstrated that: (1) the presence of intersubunit disulfides is both necessary and sufficient for engendering a stably dimeric RNase; (2) all four residues play a role in determining the exchange of N-terminal domains; (3) the exchange is the molecular basis for the RNase antitumor action; and (4) this exchange is not a prerequisite in an evolutionary mechanism for the generation of dimeric RNases.  相似文献   

11.
目的:建立肺癌脑转移模型,筛选脑转移倾向细胞A549/GFP-2,探讨A549 和A549/GFP-2 条件液对脑微血管内皮细胞的作 用,揭示肺癌脑转移的机制。方法:利用胸腔原位注射法筛选出A549 脑转移细胞亚型A549/GFP-2,原代培养大鼠脑微血管内皮 细胞,观察A549和A549/GFP-2 细胞条件液对脑微血管内皮细胞增殖的影响和细胞内HIF-1琢和VEGF表达的改变。结果:胸腔 内原位种植较好地反应了临床肺癌脑转移的过程。不同浓度的A549 和A549/GFP-2 细胞条件液对脑微血管内皮细胞增殖的影响 不同,低浓度(< 30%)对脑微血管内皮细胞有促进的作用;高浓度(> 60%)对脑微血管内皮细胞的增殖有不同程度的抑制作用, 且有随浓度增加抑制作用增强的趋势。A549 和A549/GFP-2 细胞条件液能提高脑微血管内皮细胞内HIF-1alpha和VEGF 的表达。结 论:胸腔内原位种植是建立肺癌脑转移的稳定模型。肺癌脑转移与肺癌细胞在生长过程中分泌的HIF-1alpha和VEGF等细胞因子破 坏了脑微血管内皮细胞的结构有关。  相似文献   

12.
All naturally occurring sphingomyelins have the d-erythro-(2S,3R) configuration of the sphingoid base. We have developed a normal-phase HPLC method for the separation of this natural stereoisomer from the l-threo-sphingomyelin, which is the other stereoisomer commonly present in semisynthetic preparations of acyl-chain defined sphingomyelins. The chromatographic method was developed by modification of a previously reported method for phospholipid separation on a normal-phase diol column. The separation was accomplished by a binary gradient of solvent mixtures (A) hexane:isopropanol:acetic acid (82:17:1.0 by vol) and (B) isopropanol:water:acetic acid (85:14:1.0 by vol) with 0.08 vol% triethylamine added to both solvent mixtures. The program of gradient elution was optimized for maximal separation of sphingomyelin diastereomers. For detection of the lipids, a light-scattering detector was used. This analytical scale HPLC method was also used for purification of the stereoisomers (up to 0.5 mg of N-oleoyl-sphingomyelin in a single injection). The purified stereoisomers were at least 99% pure according to high-performance thin-layer chromatography and analytical HPLC.  相似文献   

13.
The addition of poly(ethylene glycol) (Mn = 200 g/mol) (PEG-200) to the fermentation media of Alcaligenes eutrophus and Alcaligenes latus at various stages of growth resulted in the synthesis of poly(3-hydroxybutyrate) (PHB) with bimodal molecular weight distributions. The presence of 2% w/v-PEG-200 did not have deleterious effects on PHB volumetric yields and cell productivity. In general, the Mn values of the high (H) and low (L) fractions showed little variability as a function of the time at which PEG-200 was added to the cultures. By this approach, the H:L ratios (w/w) of the PHB synthesized by A. eutrophus and A. latus were varied from 9:91 to 76:24 and from 16:84 to 88:12, respectively. It is believed that the H fractions were formed prior to the addition of PEG-200 to the cultures. Also, once PEG-200 was made available to the cells, PEG-200 acted as a switch so that the reduced molecular weight fraction was formed. In addition, a necessary requirement for the above is that the frequency of transesterification reactions during polymer synthesis was small. The efficiency that PEG-200 reduced the molecular weight of the PHBs formed by both bacteria appears similar. Indirect evidence suggests that the PHB L fractions formed by A. latus subsequent to PEG-200 addition consist primarily of chains that have PEG terminal groups. This terminal chain structure was not observed for PHB formed by A. eutrophus.  相似文献   

14.
The coenzyme B(12)-dependent isobutyryl coenzyme A (CoA) mutase (ICM) and methylmalonyl-CoA mutase (MCM) catalyze the isomerization of n-butyryl-CoA to isobutyryl-CoA and of methylmalonyl-CoA to succinyl-CoA, respectively. The influence that both mutases have on the conversion of n- and isobutyryl-CoA to methylmalonyl-CoA and the use of the latter in polyketide biosynthesis have been investigated with the polyether antibiotic (monensin) producer Streptomyces cinnamonensis. Mutants prepared by inserting a hygromycin resistance gene (hygB) into either icmA or mutB, encoding the large subunits of ICM and MCM, respectively, have been characterized. The icmA::hygB mutant was unable to grow on valine or isobutyrate as the sole carbon source but grew normally on butyrate, indicating a key role for ICM in valine and isobutyrate metabolism in minimal medium. The mutB::hygB mutant was unable to grow on propionate and grew only weakly on butyrate and isobutyrate as sole carbon sources. (13)C-labeling experiments show that in both mutants butyrate and acetoacetate may be incorporated into the propionate units in monensin A without cleavage to acetate units. Hence, n-butyryl-CoA may be converted into methylmalonyl-CoA through a carbon skeleton rearrangement for which neither ICM nor MCM alone is essential.  相似文献   

15.
绿豆抗豆象遗传的初步研究   总被引:1,自引:0,他引:1  
绿豆象(Callos0bruchun chinensis L.)是豇豆属豆类作物重要的仓库害虫.本研究通过抗豆象杂交育种后代VC1973A/TC1966 F1、F2和VC1973A/(VC1973A/TC1966 F2)BC1F1及TC1966/(VC1973A/TC1966 F2)BC1F1分离群体的遗传分析,发现绿豆抗豆象性状符合31的遗传分离规律,证明绿豆对豆象的抗性由1对显性单基因(Aa)控制,抗虫性为显性(A),感虫为隐性(a).  相似文献   

16.
In our studies of the genes constituting the porcine A0 blood group system, we have characterized a cDNA, encoding an alpha(1,3)N-acetylgalactosaminyltransferase, that putatively represents the blood group A transferase gene. The cDNA has a 1095-bp open reading frame and shares 76.9% nucleotide and 66.7% amino acid identity with the human ABO gene. Using a somatic cell hybrid panel, the cDNA was assigned to the q arm of pig chromosome 1, in the region of the erythrocyte antigen A locus (EAA), which represents the porcine blood group A transferase gene. The RNA corresponding to our cDNA was expressed in the small intestinal mucosae of pigs possessing EAA activity, whereas expression was absent in animals lacking this blood group antigen. The UDP-N-acetylgalactosamine (UDP-GalNAc) transferase activity of the gene product, expressed in Chinese hamster ovary (CHO) cells, was specific for the acceptor fucosyl-alpha(1,2)galactopyranoside; the enzyme did not use phenyl-beta-D-galactopyranoside (phenyl-beta-D-Gal) as an acceptor. Because the alpha(1,3)GalNAc transferase gene product requires an alpha(1,2)fucosylated acceptor for UDP-GalNAc transferase activity, the alpha(1,2)fucosyltransferase gene product is necessary for the functioning of the alpha(1,3)GalNAc transferase gene product. This mechanism underlies the epistatic effect of the porcine S locus on expression of the blood group A antigen. ABBREVIATIONS: CDS: coding sequence; CHO: Chinese Hamster Ovary; EAA: erythrocyte antigen A; FCS: foetal calf serum; Fucalpha(1,2)Gal: fucosyl-alpha(1,2)galactopyranoside; Gal: galactopyranoside; GGTA1: Galalpha(1,3)Gal transferase; PCR: polymerase chain reaction; phenyl-beta-D-Gal: phenyl-beta-D-galactopyranoside; R: Galbeta1-4Glcbeta1-1Cer; UDP-GalNAc: uridine diphosphate N-acetylgalactosamine  相似文献   

17.
AIMS: The aim was to investigate the biosorption of chromium, nickel and iron from metallurgical effluents, produced by a steel foundry, using a strain of Aspergillus terreus immobilized in polyurethane foam. METHODS AND RESULTS: A. terreus UFMG-F01 was immobilized in polyurethane foam and subjected to biosorption tests with metallurgical effluents. Maximal metal uptake values of 164.5 mg g(-1) iron, 96.5 mg g(-1) chromium and 19.6 mg g(-1) nickel were attained in a culture medium containing 100% of effluent stream supplemented with 1% of glucose, after 6 d of incubation. CONCLUSIONS: Microbial populations in metal-polluted environments include fungi that have adapted to otherwise toxic concentrations of heavy metals and have become metal resistant. In this work, a strain of A. terreus was successfully used as a metal biosorbent for the treatment of metallurgical effluents. SIGNIFICANCE AND IMPACT OF THE STUDY: A. terreus UFMG-F01 was shown to have good biosorption properties with respect to heavy metals. The low cost and simplicity of this technique make its use ideal for the treatment of effluents from steel foundries.  相似文献   

18.
The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7,8-dihydro-8-oxo-2′-deoxyguanosine:2′-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1–Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.  相似文献   

19.
Degradation rates and compositional changes in active ingredients of the two crop protection insecticides, Fitoverm and Spinosad, have been compared by using a reverse-phase HPLC with UV detection (250 nm). Decay of the major components of active ingredients: spinosyns A and D (Spinosad) and avermectins A1a, A2a, B1a and B2a (Fitoverm) was studied in the thin dry layer on the glass at sunlight at regular day/night changes of temperature. The following results were obtained: 1) 50% degradation time for spinosyns was about two times shorter than that for avermectins: at 40 degrees C day-time temperature it was 6 hours and 10 hours, respectively, while at 23 degrees C these times increased approx. ten-fold; 2) the initial composition of spinosyns was changed during degradation: ratio of spinosyns A/D was increased (i.e. D component degraded faster than the A one) and additionally 4-5 new spinosyns and/or their derivatives were formed; 3) rate of degradation of each avermectin was practically the same, i.e. percent composition of avermectins did not significantly alter; 4) retention times of avermectins B2a, A2a and A1a were similar to those of either initial spinosyns (A) or products of their decay. It is concluded that determination of spinosysn residues with the aid of UV-HPLC is a complex task since both initial spinosyns (A and D) and their conversion/decay products must be measured. The latter can be dominant residues and not always easy to identify. Analysis consider to be complicated when a sample contains residues of both spinosyns and avermectins.  相似文献   

20.
Twelve 14C-acetylated glycopeptides have been subjected to affinity chromatography on concanvalin A (Con A)--Sepharose at pH 7.5. The elution profiles could be classified into four distinct patterns. The first pattern showed no retardation of glycopeptide on the column and was elicited with a glycopeptide having three peripheral oligosaccharide chains: (abstract:see text). Such glycopeptides have only a single mannose residue capable of interacting with Con A--Sepharose; an interacting mannose residue is either an alpha-linked nonreducing terminal residue or an alpha-linked 2-O-substituted residue. The second type of profile showed a retarded elution of glycopeptide with buffer lacking methyl alpha-D-glucopyranoside (indicative of weak interaction with the column) and was given by glycopeptides with the structures: (abstract: see text) where R1 is either H or a sialyl residue. The third profile type showed tight binding of glycopeptide to Con A--Sepharose and elution as a sharp peak with 0.1 M methyl alpha-D-glucopyranoside; glycopeptides giving this pattern had the structures: (abstract: see text) where R2 is either H, glcNAc, Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc. These glycopeptides all have two interacting mannose residues, the mimimum required for binding to the column; one of these mannose residues must, however, be a terminal residue to obtain tight binding and sharp elution. The fourth profile type showed tight binding of glycopeptide to the column but elution with 0.1 M methyl alpha-D-glucopyranoside resulted in a broad peak indicating very tight binding; glycopeptides showing this behaviour had the structures: (abstract: see text) where R3 is either GlcNAc,Gal-beta 1,4-GlcNAc, or sialyl-Gal-beta 1,4-GlcNAc.Therefore it can be concluded that although a minimum of two interacting mannose residues is required for binding to Con A--Sepharose, the residues linked to these mannoses can either strengthen or weaken binding to the column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号