首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lalvani A  Behr MA  Sridhar S 《Cell》2012,148(3):389-391
Tobin and colleagues show that both inhibition and excessive production of the inflammatory mediator TNFα impact the pathogenesis of tuberculosis (TB) and the response to therapy. Identifying a critical role for the genetically determined balance between pro- and anti-inflammatory eicosanoids in regulating TNFα levels provides a roadmap to tailored TB treatment based on host genotype.  相似文献   

2.
3.
4.
Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host’s response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella’s SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella’s invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella’s restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection.  相似文献   

5.
Cline H 《Current biology : CB》2005,15(6):R203-R205
Recent studies have implicated a number of membrane-associated proteins, including the signaling pair neuroligin and beta-neurexin, in synapse formation, suggesting that they govern the ratio of inhibitory and excitatory synapses on CNS neurons. These findings, together with data indicating that the genes encoding neuroligin and PSD95 are altered in autism patients, suggest that a molecular understanding of complex neurological diseases is within reach.  相似文献   

6.
7.
8.
9.
Intracellular innate resistance to bacterial pathogens   总被引:2,自引:0,他引:2  
Mammalian innate immunity stimulates antigen-specific immune responses and acts to control infection prior to the onset of adaptive immunity. Some bacterial pathogens replicate within the host cell and are therefore sheltered from some protective aspects of innate immunity such as complement. Here we focus on mechanisms of innate intracellular resistance encountered by bacterial pathogens and how some bacteria can evade destruction by the innate immune system. Major strategies of intracellular antibacterial defence include pathogen compartmentalization and iron limitation. Compartmentalization of pathogens within the host endocytic pathway is critical for generating high local concentrations of antimicrobial molecules, such as reactive oxygen species, and regulating concentrations of divalent cations that are essential for microbial growth. Cytosolic sensing, autophagy, sequestration of essential nutrients and membrane attack by antimicrobial peptides are also discussed.  相似文献   

10.
11.
Concurrent evolution of resistance and tolerance to pathogens   总被引:1,自引:0,他引:1  
Recent experiments on plant defenses against pathogens or herbivores have shown various patterns of the association between resistance, which reduces the probability of being infected or attacked, and tolerance, which reduces the loss of fitness caused by the infection or attack. Our study describes the simultaneous evolution of these two strategies of defense in a population of hosts submitted to a pathogen. We extended previous approaches by assuming that the two traits are independent (e.g., determined by two unlinked genes), by modeling different shapes of the costs of defenses, and by taking into account the demographic and epidemiological dynamics of the system. We provide novel predictions on the variability and the evolution of defenses. First, resistance and tolerance do not necessarily exclude each other; second, they should respond in different ways to changes in parameters that affect the epidemiology or the relative costs and benefits of defenses; and third, when comparing investments in defenses among different environments, the apparent associations among resistance, tolerance, and fecundity in the absence of parasites can lead to the false conclusion that only one defense trait is costly. The latter result emphasizes the problems of estimating trade-offs and costs among natural populations without knowledge of the underlying mechanisms.  相似文献   

12.
In the past 10 years, different strategies have been used to produce transgenic plants that are less susceptible to diseases caused by phytopathogenic fungi and bacteria. Genes from different organisms, including bacteria, fungi and plants, have been successfully used to develop these strategies. Some strategies have been shown to be effective against different pathogens, whereas others are specific to a single pathogen or even to a single pathovar or race of a given pathogen. In this review, we present the strategies that have been employed to produce transgenic plants less susceptible to bacterial and fungal diseases and which constitute an important area of plant biotechnology.The authors are with the Departamento de Ingeniería Genética de Plantas. Centro de Investigación y de Estudios Avanzados del IPN-Unidad Irapuato, Km 9.6 del Libramiento Norte carretera Irapuato-León, Apdo Postal 629, Irapuato, Mexico.  相似文献   

13.
14.
Adherent cells respond to mechanical properties of the surrounding extracellular matrix. Mechanical forces, sensed at specialized cell-matrix adhesion sites, promote actomyosin-based contraction within the cell. By manipulating matrix rigidity and adhesion strength, new roles for actomyosin contractility in the regulation of basic cellular functions, including cell proliferation, migration and stem cell differentiation, have recently been discovered. These investigations demonstrate that a balance of forces between cell adhesion on the outside and myosin II-based contractility on the inside of the cell controls many aspects of cell behavior. Disturbing this balance contributes to the pathogenesis of various human diseases. Therefore, elaborate signaling networks have evolved that modulate myosin II activity to maintain tensional homeostasis. These include signaling pathways that regulate myosin light chain phosphorylation as well as myosin II heavy chain interactions.  相似文献   

15.
Hyaluronan and homeostasis: a balancing act.   总被引:14,自引:0,他引:14  
  相似文献   

16.
17.
18.
Recent studies on the interactions between plants and pathogenic microorganisms indicate that the processes of disease symptom development and pathogen growth can be uncoupled. Thus, in many instances, the symptoms associated with disease represent an active host response to the presence of a pathogen. These host responses are frequently mediated by phytohormones. For example, ethylene and salicylic acid (SA) mediate symptom development but do not influence bacterial growth in the interaction between tomato (Lycopersicon esculentum) and virulent Xanthomonas campestris pv vesicatoria (Xcv). It is not apparent why extensive tissue death is integral to a defense response if it does not have the effect of limiting pathogen proliferation. One possible function for this hormone-mediated response is to induce a systemic defense response. We therefore assessed the systemic responses of tomato to Xcv. SA- and ethylene-deficient transgenic lines were used to investigate the roles of these phytohormones in systemic signaling. Virulent and avirulent Xcv did induce a systemic response as evidenced by expression of defense-associated pathogenesis-related genes in an ethylene- and SA-dependent manner. This systemic response reduced cell death but not bacterial growth during subsequent challenge with virulent Xcv. This systemic acquired tolerance (SAT) consists of reduced tissue damage in response to secondary challenge with a virulent pathogen with no effect upon pathogen growth. SAT was associated with a rapid ethylene and pathogenesis-related gene induction upon challenge. SAT was also induced by infection with Pseudomonas syringae pv tomato. These data show that SAT resembles systemic acquired resistance without inhibition of pathogen growth.  相似文献   

19.
Cross-talk between enteric pathogens and the intestine   总被引:2,自引:0,他引:2  
Enteric pathogens finely regulate the expression of virulence genes in reply to stimuli generated by the intestinal environment. This minireview focuses on recently discovered strategies developed by enteric bacteria to cause intestinal secretion through the elaboration of factors that share structure and function with specific host counterparts. Such bacterial antigens appear to interfere largely with the epithelial cell signalling that physiologically regulates the numerous and, as yet not fully elucidated, mechanisms controlling both the transcellular and the paracellular secretion pathways. Heat-stable enterotoxins (STs) elaborated by enterotoxigenic Escherichia coli and the enteroaggregative E. coli enterotoxin (EAST1) are both typical examples of enteric toxins that activate the transcellular secretion pathway by mimicking guanylin, the endogenous modulator of cGMP signalling. Alternative strategies have been developed by Salmonella to induce intestinal secretion through the elaboration of a factor (SopB) that resembles at least two of the host cell 4-phosphatases, enzymes that activate the Ca-dependent transcellular secretion pathway. Finally, Vibrio cholerae has developed innovative tactics to activate the paracellular secretion pathway through the elaboration of Zonula occludens toxin (Zot), a factor that mimics a recently described physiological modulator of intercellular tight junctions.  相似文献   

20.
To examine whether intestinal helminth infection may be a risk factor for enteric bacterial infection, a murine model was established using the intestinal helminth Heligomosomoides polygyrus and a murine pathogen Citrobacter rodentium, which causes infectious colitis. Using this model we recently have shown that coinfection with the Th2-inducing H. polygyrus and C. rodentium promotes bacterial-associated disease and colitis. In this study, we expand our previous observations and examine the hypothesis that dendritic cells (DC) stimulated by helminth infection may play an important role in the regulation of the intestinal immune response to concurrent C. rodentium infection as well as in the modulation of the bacterial pathogenesis. We show that H. polygyrus infection induces DC activation and IL-10 expression, and that adoptive transfer of parasite-primed DC significantly impairs host protection to C. rodentium infection, resulting in an enhanced bacterial infection and in the development of a more severe colonic injury. Furthermore, we demonstrate that adoptive transfer of parasite-primed IL-10-deficient DCs fails to result in the development of a significantly enhanced C. rodentium-mediated colitis. Similarly, when the DC IL-10 response was neutralized by anti-IL-10 mAb treatment in mice that received parasite-primed DC, no deleterious effect of the parasite-primed DC on the host intestinal response to C. rodentium was detected. Thus, our results provide evidence to indicate that the H. polygyrus-dependent modulation of the host response to concurrent C. rodentium infection involves IL-10-producing DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号