首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP) kinase and NF-κB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.  相似文献   

2.
Myeloid differentiation factor (MyD)88, an adaptor protein shared by the Toll-interleukin 1 receptor superfamily, plays a critical role in host defence during many systemic bacterial infections by inducing protective inflammatory responses that limit bacterial growth. However, the role of innate responses during gastrointestinal (GI) infections is less clear, in part because the GI tract is tolerant to commensal antigens. The current study investigated the role of MyD88 following infection by the murine bacterial pathogen, Citrobacter rodentium . MyD88-deficient mice suffered a lethal colitis coincident with colonic mucosal ulcerations and bleeding. Their susceptibility was associated with an overwhelming bacterial burden and selectively impaired immune responses in colonic tissues, which included delayed inflammatory cell recruitment, reduced iNOS and abrogated production of TNF-α and IL-6 from MyD88-deficient macrophages and colons cultured ex vivo . Immunostaining for Ki67 and BrDU revealed that MyD88 signalling mediated epithelial hyper-proliferation in response to C. rodentium infection. Thus, MyD88-deficient mice could not promote epithelial cell turnover and repair, leading to deep bacterial invasion of colonic crypts, intestinal barrier dysfunction and, ultimately, widespread mucosal ulcerations. In conclusion, MyD88 signalling within the GI tract plays a critical role in mediating host defence against an enteric bacterial pathogen, by controlling bacterial numbers and promoting intestinal epithelial homeostasis.  相似文献   

3.
A massive neutrophil influx in the intestine is the histopathological hallmark of Salmonella enterica serovar Typhimurium-induced enterocolitis in humans. Two major hypotheses on the mechanism leading to neutrophil infiltration in the intestinal mucosa have emerged. One hypothesis suggests that S. enterica serovar Typhimurium takes an active role in triggering this host response by injecting proteins, termed effectors, into the host cell cytosol which induce a proinflammatory gene expression profile in the intestinal epithelium. The second hypothesis suggests a more passive role for the pathogen by proposing that bacterial invasion stimulates the innate pathways of inflammation because the pathogen-associated molecular patterns of S. enterica serovar Typhimurium are recognized by pathogen recognition receptors on cells in the lamina propria. A review of the current literature reveals that, while pathogen recognition receptors are clearly involved in eliciting neutrophil influx during S. enterica serovar Typhimurium infection, a direct contribution of effectors in triggering proinflammatory host cell responses cannot currently be ruled out.  相似文献   

4.
Intracellular innate resistance to bacterial pathogens   总被引:2,自引:0,他引:2  
Mammalian innate immunity stimulates antigen-specific immune responses and acts to control infection prior to the onset of adaptive immunity. Some bacterial pathogens replicate within the host cell and are therefore sheltered from some protective aspects of innate immunity such as complement. Here we focus on mechanisms of innate intracellular resistance encountered by bacterial pathogens and how some bacteria can evade destruction by the innate immune system. Major strategies of intracellular antibacterial defence include pathogen compartmentalization and iron limitation. Compartmentalization of pathogens within the host endocytic pathway is critical for generating high local concentrations of antimicrobial molecules, such as reactive oxygen species, and regulating concentrations of divalent cations that are essential for microbial growth. Cytosolic sensing, autophagy, sequestration of essential nutrients and membrane attack by antimicrobial peptides are also discussed.  相似文献   

5.
The role of microbiota in infectious disease   总被引:4,自引:0,他引:4  
The intestine harbors an ecosystem composed of the intestinal mucosa and the commensal microbiota. The microbiota fosters development, aids digestion and protects host cells from pathogens - a function referred to as colonization resistance. Little is known about the molecular basis of colonization resistance and how it can be overcome by enteropathogenic bacteria. Recently, studies on inflammatory bowel diseases and on animal models for enteric infection have provided new insights into colonization resistance. Gut inflammation changes microbiota composition, disrupts colonization resistance and enhances pathogen growth. Thus, some pathogens can benefit from inflammatory defenses. This new paradigm will enable the study of host factors enhancing or inhibiting bacterial growth in health and disease.  相似文献   

6.
Eukaryotic organisms of the plant and animal kingdoms have developed evolutionarily conserved systems of defence against microbial pathogens. These systems depend on the specific recognition of microbial products or structures by molecules of the host innate immune system. The first mammalian molecules shown to be involved in innate immune recognition of, and defence against, microbial pathogens were the Toll-like receptors (TLRs). These proteins are predominantly but not exclusively located in the transmembrane region of host cells. Interestingly, mammalian hosts were subsequently found to also harbour cytosolic proteins with analogous structures and functions to plant defence molecules. The members of this protein family exhibit a tripartite domain structure and are characterized by a central nucleotide-binding oligomerization domain (NOD). Moreover, in common with TLRs, most NOD proteins possess a C-terminal leucine-rich repeat (LRR) domain, which is required for the sensing of microbial products and structures. Recently, the name 'nucleotide-binding domain and LRR' (NLR) was coined to describe this family of proteins. It is now clear that NLR proteins play key roles in the cytoplasmic recognition of whole bacteria or their products. Moreover, it has been demonstrated in animal studies that NLRs are important for host defence against bacterial infection. This review will particularly focus on two subfamilies of NLR proteins, the NODs and 'NALPs', which specifically recognize bacterial products, including cell wall peptidoglycan and flagellin. We will discuss the downstream signalling events and host cell responses to NLR recognition of such products, as well as the strategies that bacterial pathogens employ to trigger NLR signalling in host cells. Cytosolic recognition of microbial factors by NLR proteins appears to be one mechanism whereby the innate immune system is able to discriminate between pathogenic bacteria ('foe') and commensal ('friendly') members of the host microflora.  相似文献   

7.
Plant genomes contain two major classes of innate immune receptors to recognize different pathogens. The pattern recognition receptors perceive conserved pathogen-associated molecular patterns and the resistance genes with nucleotide-binding (NB) and leucine-rich repeat (LRR) domains recognize specific pathogen effectors. The precise regulation of resistance genes is important since the unregulated expression of NB-LRR genes can inhibit growth and may result in autoimmunity in the absence of pathogen infection. It was shown that a subset of miRNAs could target NB-LRR genes and act as an important regulator of plant immunity in the absence of pathogens. Plants not only interact with pathogens, but they can also establish symbiotic interactions with microbes. Nitrogen-fixing symbiotic interaction and nodule formation of legumes may also require the suppression of host defence to prevent immune responses. We found that upon symbiotic interactions, miRNAs repressing NB-LRR expression are upregulated in the developing nodules of Medicago truncatula. Furthermore, we show that the suppression of the activity of the NB-LRR genes targeted by these miRNAs is important during nodule development. Our results suggest that the downregulation of NB-LRR resistance genes in the developing nodule produces a suitable niche that facilitates bacterial colonization and the development of an N-fixing nodule.  相似文献   

8.
Rapid detection and elimination of pathogens invasive to intestinal tissue is essential to avoid prolonged gut inflammation, or systemic sepsis. The discovery of transmembrane or intracytoplasmic pattern recognition receptors that detect the presence of conserved microbial macromolecular structures has significantly advanced the understanding of how metazoans respond to and eliminate bacteria that have entered the intestinal mucosa. In this review, we highlight recent advances in the field of host recognition of bacterial pathogens and subsequent mucosal innate immune response. Additionally, some bacteria are pathogenic because they have evolved sophisticated mechanisms to evade the host mucosal innate immune response. We discuss advances in identifying the mechanisms by which pathogens evade detection by dampening the immune response.  相似文献   

9.
The innate immune response was once considered to be a limited set of responses that aimed to contain an infection by primitive 'ingest and kill' mechanisms, giving the host time to mount a specific humoral and cellular immune response. In the mid-1990s, however, the discovery of Toll-like receptors heralded a revolution in our understanding of how microorganisms are recognized by the innate immune system, and how this system is activated. Several major classes of pathogen-recognition receptors have now been described, each with specific abilities to recognize conserved bacterial structures. The challenge ahead is to understand the level of complexity that underlies the response that is triggered by pathogen recognition. In this Review, we use the fungal pathogen Candida albicans as a model for the complex interaction that exists between the host pattern-recognition systems and invading microbial pathogens.  相似文献   

10.
11.
Review of innate and specific immunity in plants and animals   总被引:5,自引:0,他引:5  
Iriti M  Faoro F 《Mycopathologia》2007,164(2):57-64
Innate immunity represents a trait common to plants and animals, based on the recognition of pathogen associated molecular patterns (PAMPs) by the host pattern recognition receptors (PRRs). It is generally assumed that a pathogen strain, or race, may have elaborated mechanisms to suppress, or evade, the PAMP-triggered immunity. Once this plan was successful, the colonization would have been counteracted by an adaptive strategy that a plant cultivar must have evolved as a second line of defence. In this co-evolutionary context, adaptive immunity and host resistance (cultivar-pathogen race/strain-specific) has been differently selected, in animals and plants respectively, to face specialized pathogens. Notwithstanding, plant host resistance, based on matching between resistance (R) and avirulence (avr) genes, represents a form of innate immunity, being R proteins similar to PRRs, although able to recognize specific virulence factors (avr proteins) rather than PAMPs. Besides, despite the lack of adaptive immunity preserved plants from autoimmune disorders, inappropriate plant immune responses may occur, producing some side-effects, in terms of fitness costs of induced resistance and autotoxicity. A set of similar defence responses shared from plants and animals, such as defensins, reactive oxygen species (ROS), oxylipins and programmed cell death (PCD) are briefly described.  相似文献   

12.
Successful pathogens have evolved to evade innate immune recognition of microbial molecules by pattern recognition receptors (PRR), which control microbial growth in host tissues. Upon Legionella pneumophila infection of macrophages, the cytosolic PRR Nod1 recognizes anhydro-disaccharide-tetrapeptide (anhDSTP) generated by soluble lytic transglycosylase (SltL), the predominant bacterial peptidoglycan degrading enzyme, to activate NF-κB-dependent innate immune responses. We show that L.?pneumophila periplasmic protein EnhC, which is uniquely required for bacterial replication within macrophages, interferes with SltL to lower anhDSTP production. L.?pneumophila mutant strains lacking EnhC (ΔenhC) increase Nod1-dependent NF-κB activation in host cells, while reducing SltL activity in?a ΔenhC strain restores intracellular bacterial growth. Further, L.?pneumophila ΔenhC is specifically rescued in Nod1- but not Nod2-deficient macrophages, arguing that EnhC facilitates evasion from Nod1 recognition. These results indicate that?a bacterial pathogen regulates peptidoglycan degradation to control the production of PRR ligands and evade innate immune recognition.  相似文献   

13.
The role of scavenger receptors in the innate immune system   总被引:5,自引:0,他引:5  
Akey aspect of the innate immune system is the ability to discriminate between self and infectious nonself. This is achieved through pattern recognition receptors which directly recognise molecular epitopes expressed by microbes. Scavenger receptors (SRs) have been studied primarily due to their ability to bind and internalise modified lipoproteins, suggesting an important role in foam cell formation and the pathogenesis of atherosclerosis. However, the ability of some SRs to function as pattern recognition receptors through their binding of a wide variety of pathogens indicates a potential role in host defence. This review will detail our current understanding of the function of SRs in innate immunity, and in the initiation of aquired immune responses.  相似文献   

14.
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.  相似文献   

15.
This protocol outlines the steps required to produce a robust model of infectious disease and colitis, as well as the methods used to characterize Citrobacter rodentium infection in mice. C. rodentium is a gram negative, murine specific bacterial pathogen that is closely related to the clinically important human pathogens enteropathogenic E. coli and enterohemorrhagic E. coli. Upon infection with C. rodentium, immunocompetent mice suffer from modest and transient weight loss and diarrhea. Histologically, intestinal crypt elongation, immune cell infiltration, and goblet cell depletion are observed. Clearance of infection is achieved after 3 to 4 weeks. Measurement of intestinal epithelial barrier integrity, bacterial load, and histological damage at different time points after infection, allow the characterization of mouse strains susceptible to infection.The virulence mechanisms by which bacterial pathogens colonize the intestinal tract of their hosts, as well as specific host responses that defend against such infections are poorly understood. Therefore the C. rodentium model of enteric bacterial infection serves as a valuable tool to aid in our understanding of these processes. Enteric bacteria have also been linked to Inflammatory Bowel Diseases (IBDs). It has been hypothesized that the maladaptive chronic inflammatory responses seen in IBD patients develop in genetically susceptible individuals following abnormal exposure of the intestinal mucosal immune system to enteric bacteria. Therefore, the study of models of infectious colitis offers significant potential for defining potentially pathogenic host responses to enteric bacteria. C. rodentium induced colitis is one such rare model that allows for the analysis of host responses to enteric bacteria, furthering our understanding of potential mechanisms of IBD pathogenesis; essential in the development of novel preventative and therapeutic treatments.  相似文献   

16.
Natural killer (NK) cells are well recognized for their ability to provide a first line of defence against viral pathogens and they are increasingly being implicated in immune responses against certain bacterial and parasitic infections. Reciprocally, viruses have devised numerous strategies to evade the activation of NK cells and have influenced the evolution of NK-cell receptors and their ligands. NK cells contribute to host defence by their ability to rapidly secrete cytokines and chemokines, as well as to directly kill infected host cells. In addition to their participation in the immediate innate immune response against infection, interactions between NK cells and dendritic cells shape the nature of the subsequent adaptive immune response to pathogens.  相似文献   

17.
New insights into innate immunity in Arabidopsis   总被引:2,自引:0,他引:2  
The term innate immunity has been described as '. . . the surveillance system that detects the presence and nature of the infection and provides the first line of host defense . . .' (Medzhitov, 2001; Nat Rev Immunol 1: 135-145). The strategy of innate immunity is based on the recognition of constitutive and conserved molecules from pathogens by specific receptors, triggering defence responses (Medzhitov and Janeway, 2002; Science 296: 298-300). It has been only within the past few years that studies of plant innate immunity, especially in Arabidopsis, have provided important insights into molecular details that define innate immunity in plants. Here we review the innate immune response in Arabidopsis, where leucine-rich repeat (LRR) cell surface receptors play central roles in monitoring the presence of pathogen (microbe) associated molecules to initiate the rapid expression of defence genes. The PAMPS also activate the expression of genes encoding a family of endogenous peptides (AtPep1 paralogues) and their receptor (PEPR1) that amplify defence signalling through a feedback loop initiated by PAMPS. The concept of innate immunity has provided a valuable framework for researchers to re-evaluate the roles of exogenous and endogenous signals that regulate the expression of plant defensive genes.  相似文献   

18.
Dendritic cells (DCs) have an important function in the initiation and differentiation of immune responses, linking innate information to tailored adaptive responses. Depending on the pathogen invading the body, specific immune responses are built up that are crucial for eliminating the pathogen from the host. Host recognition of invading microorganisms relies on evolutionarily ancient, germline-encoded pattern recognition receptors (PRRs) that are highly expressed on the cell surface of DCs, of which the Toll-like receptors (TLRs) are well characterized and recognize bacterial or viral components. Moreover, they bind a variety of self-proteins released from damaged tissues including several heat-shock proteins. The membrane-associated C-type lectin receptors (CLRs) recognize glycan structures expressed by host cells of the immune system or on specific tissues, which upon recognition allow cellular interactions between DCs and other immune or tissue cells. In addition, CLRs can function as PRRs. In contrast to TLRs, CLRs recognize carbohydrate structures present on the pathogens. Modification of glycan structures on pathogens to mimic host glycans can thereby alter CLR interactions that subsequently modifies DC-induced polarization. In this review, we will discuss in detail how specific glycosylation of antigens can dictate both the innate and adaptive interactions that are mediated by CLRs on DCs and how this balances immune activation and inhibition of DC function.  相似文献   

19.
Interleukin 17 (IL-17) is a central cytokine implicated in inflammation and antimicrobial defense. After infection, both innate and adaptive IL-17 responses have been reported, but the type of cells involved in innate IL-17 induction, as well as their contribution to in vivo responses, are poorly understood. Here we found that Citrobacter and Salmonella infection triggered early IL-17 production, which was crucial for host defense and was mediated by CD4(+) T helper cells. Enteric innate T helper type 17 (iT(H)17) responses occurred principally in the cecum, were dependent on the Nod-like receptors Nod1 and Nod2, required IL-6 induction and were associated with a decrease in mucosal CD103(+) dendritic cells. Moreover, imprinting by the intestinal microbiota was fully required for the generation of iT(H)17 responses. Together, these results identify the Nod-iT(H)17 axis as a central element in controlling enteric pathogens, which may implicate Nod-driven iT(H)17 responses in the development of inflammatory bowel diseases.  相似文献   

20.
Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co‐evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号