共查询到20条相似文献,搜索用时 10 毫秒
1.
Remote sensing studies suggest that savannahs are transforming into more tree-dominated states; however, progressive nitrogen limitation could potentially retard this putatively CO2-driven invasion. We analysed controls on nitrogen mineralization rates in savannah by manipulating rainfall and the cover of grass and tree elements against the backdrop of the seasonal temperature and rainfall variation. We found that the seasonal pattern of nitrogen mineralization was strongly influenced by rainfall, and that manipulative increases in rainfall could boost mineralization rates. Additionally, mineralization rates were considerably higher on plots with grasses and lower on plots with trees. Our findings suggest that shifting a savannah from a grass to a tree-dominated state can substantially reduce nitrogen mineralization rates, thereby potentially creating a negative feedback on the CO2-induced invasion of savannahs by trees. 相似文献
2.
Arid regions of Saudi Arabia occupy most of the area of the Arabian Peninsula. These areas are at the meeting position of plants from Mediterranean, Irano-Turanian, Saharo-Arabian, and Sudanian phytogegraphical regions. Geomorphology of the area reveals a wide diversity of landforms including coastal lines, desert plains, and high mountains. Grasses are well represented in the flora of Saudi Arabia and form an appropriate group for studying the relation of grass distribution, chorology, and photosynthetic pathways. In this paper, geographical distribution of C3 and C4 grasses was studied in an area extending between latitude 17°N and latitude 31°N. Two regions were recognized in the study area, namely; a (relatively) cold region north of latitude 24°N with ample winter rainfall, and a hot region south of latitude 24°N with scarce summer rainfall. Work involved field observations and collection of grass species in the study area. Work also depended on published carbon discrimination values of grasses and biochemical analysis of C4 species subtypes. Climatic conditions in the study area vary considerably, and the distribution of grass species was found to follow patterns that reveal adaptive advantages of different photosynthetic pathways. Grass species in the cold northern region with ample winter rainfall are generally C3 grasses belonging mainly to Mediterranean/Irano-Turanean chorotypes. C3 grass species found in the southern hot region were recorded at high altitudes of southern mountains characterized by low temperatures. Grass species recorded at low altitudes in the south hot region with scarce summer rainfall were mainly C4 grasses belonging to Tropical and Saharo-Arabian-Sudanean chorotypes. Pronounced spatial variations of temperature profoundly control the geographical distribution of C3 and C4 grasses. Low temperatures in the northern cold region and at high altitudes of the southern hot region limit the occurrence of C4 grasses and shift the ecological balance in favor of C3 grasses. Results are discussed in terms of heat sensitivity of the CO2 carboxylating enzyme of C3 grasses and high temperature optima for CO2 assimilation of C4 grasses. Results are also discussed in comparison with geographical distribution of grasses in other parts of the world. 相似文献
3.
Colin P. Osborne Robert P. Freckleton 《Proceedings. Biological sciences / The Royal Society》2009,276(1663):1753-1760
Grasses using the C4 photosynthetic pathway dominate grasslands and savannahs of warm regions, and account for half of the species in this ecologically and economically important plant family. The C4 pathway increases the potential for high rates of photosynthesis, particularly at high irradiance, and raises water-use efficiency compared with the C3 type. It is therefore classically viewed as an adaptation to open, arid conditions. Here, we test this adaptive hypothesis using the comparative method, analysing habitat data for 117 genera of grasses, representing 15 C4 lineages. The evidence from our three complementary analyses is consistent with the hypothesis that evolutionary selection for C4 photosynthesis requires open environments, but we find an equal likelihood of C4 evolutionary origins in mesic, arid and saline habitats. However, once the pathway has arisen, evolutionary transitions into arid habitats occur at higher rates in C4 than C3 clades. Extant C4 genera therefore occupy a wider range of drier habitats than their C3 counterparts because the C4 pathway represents a pre-adaptation to arid conditions. Our analyses warn against evolutionary inferences based solely upon the high occurrence of extant C4 species in dry habitats, and provide a novel interpretation of this classic ecological association. 相似文献
4.
Background and Aims
The success of C4 plants lies in their ability to attain greater efficiencies of light, water and nitrogen use under high temperature, providing an advantage in arid, hot environments. However, C4 grasses are not necessarily less sensitive to drought than C3 grasses and are proposed to respond with greater metabolic limitations, while the C3 response is predominantly stomatal. The aims of this study were to compare the drought and recovery responses of co-occurring C3 and C4 NADP-ME grasses from the subfamily Panicoideae and to determine stomatal and metabolic contributions to the observed response.Methods
Six species of locally co-occurring grasses, C3 species Alloteropsis semialata subsp. eckloniana, Panicum aequinerve and Panicum ecklonii, and C4 (NADP-ME) species Heteropogon contortus, Themeda triandra and Tristachya leucothrix, were established in pots then subjected to a controlled drought followed by re-watering. Water potentials, leaf gas exchange and the response of photosynthetic rate to internal CO2 concentrations were determined on selected occasions during the drought and re-watering treatments and compared between species and photosynthetic types.Key Results
Leaves of C4 species of grasses maintained their photosynthetic advantage until water deficits became severe, but lost their water-use advantage even under conditions of mild drought. Declining C4 photosynthesis with water deficit was mainly a consequence of metabolic limitations to CO2 assimilation, whereas, in the C3 species, stomatal limitations had a prevailing role in the drought-induced decrease in photosynthesis. The drought-sensitive metabolism of the C4 plants could explain the observed slower recovery of photosynthesis on re-watering, in comparison with C3 plants which recovered a greater proportion of photosynthesis through increased stomatal conductance.Conclusions
Within the Panicoid grasses, C4 (NADP-ME) species are metabolically more sensitive to drought than C3 species and recover more slowly from drought. 相似文献5.
6.
Russell K. Monson Robert O. Littlejohn Jr. George J. Williams III 《Photosynthesis research》1982,3(2):153-159
The quantum yield for CO2 uptake was measured in C3 and C4 monocot species from several different grassland habitats. When the quantum yield was measured in the presence of 21% O2 and 340 cm3 m-3 CO2, values were very similar in C3 monocots, C3 dicots, and C4 monocots (0.045–0.056 mole CO2 · mole-1 quanta absorbed). In the presence of 2% O2 and 800 cm3 m-3 CO2, enhancements of the quantum yield values occurred for the C3 plants (both monocots and dicots), but not for C4 monocots. A dependence of the quantum yield on leaf temperature was observed in the C3 grass, Agropyron smithii, but not in the C4 grass, Bouteloua gracilis, in 21% O2 and 340 cm3 m-3 CO2. At leaf temperatures between 22–25°C the quantum yield values were approximately equal in the two species. 相似文献
7.
Summary The relation between photosynthetic pathway and habitat of the grass species recorded in the desert regions of Sinai, Negev, and Judea was investigated. The climatic conditions and micro-environments in the study area vary considerably, and the distribution of the various species is found to conform to specific patterns which reveal the adaptive advantages of the different photosynthetic pathways. There is also a distinct correlation between the phytogeographic origin of the grass species and the photosynthetic pathways that they utilize.The survey shows that the majority of the grass species in the region are of the C3 type and all except one of these species belong to the Holarctic domain. This is in accordance with the fact that the region forms part of the Mediterranean winter rainfall regime and that C3 species have an adaptive advantage where minimum temperatures are low during the winter growing season.The occurence of C4 species increases with decreasing rainfall and they dominate in those districts where temperatures are high throughout the year. These C4 grasses are of both Holarctic and Palaeotropic origin according to the classification adopted here, but they are essentially all elements of the Saharo-Arabian, Irano-Turanian, Sudanian, or Tropical phytogeographic regions and are not typical of the Mediterranean or Euro-Siberian floras. The plants with multi-regional distributions that occur in Mediterranean communities may well be intrusive.Analysis of the three subtypes of the C4 species suggests that the malate-forming NADP-me grasses grow where water stress is not a dominating factor, while the aspartateforming NAD-me grasses are more successful under xeric conditions. The PEP-ck species are not abundant and form an intermediate group between the NADP-me and NAD-me subtypes. 相似文献
8.
The capability to reassimilate CO2 originating from intracellular decarboxylating processes connected with the photorespiratory glycolate pathway and-or decarboxylation of C4 acids during C4 photosynthesis has been investigated with four species of the genus Flaveria (Asteraceae). The C3-C4 intermediate species F. pubescens and F. anomala reassimilated CO2 much more efficiently than the C3 species F. cronquistii and, with respect to this feature, behaved similarly to the C4 species F. trinervia. Therefore, under atmospheric conditions the intermediate species photorespired with rates only between 10–20% of that measured with F. cronquistii. At low oxygen concentrations (1,5%) the reassimilation potential of F. anomala approached that of F. trinervia and was distinct from that found with F. pubescens. The data are discussed with respect to a possible sequence of events during evolution of C4 photosynthesis. If compared with related data for C3-C4 intermediate species from other genera they support the hypothesis that, during evolution of C4 photosynthesis, an efficient capacity for CO2 reassimilation evolved prior to a CO2-concentrating mechanism.Abbreviations C3, C4
assimilated CO2 initially found in 3-phosphoglycerate (C3) or malate and aspartate (C4)
-
D
reassimilation coefficient
-
R
n
, R
t
net, total CO2 evolution as measured with 0.03 and 3% CO2, respectively
- RuBP
ribulose-1,5-bisphosphate
- TPS
true photosynthesis 相似文献
9.
Cheryl D. Schmidt Karen R. Hickman Rob Channell Keith Harmoney William Stark 《Plant Ecology》2008,197(1):69-80
Old World Bluestems (OWB), introduced from Europe and Asia in the 1920s, recently have begun to raise concerns in the Great Plains. Despite suggestion in the late 1950s that OWB were weedy and negatively impacted biological diversity, they were widely introduced throughout the Great Plains for agricultural purposes. Anecdotal evidence suggests that OWB exhibit invasive characteristics that promote competitive exclusion of native species. The objective of our study was to quantify the competitive abilities of two OWB species (Caucasian bluestem; Bothriochloa bladhii (Retz.) S.T. Blake (= Bothriochloa caucasica (Trin.) C.E. Hubb.) and yellow bluestem; Bothriochloa ischaemum (L.) Keng) with three native grass species (big bluestem (Andropogon gerardii Vitman), little bluestem (Schizachyrium scoparium (Michx.) Nash), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.)). A greenhouse target-neighbor study was conducted to assess both interspecific and intraspecific competition. A total of 480 pots (4.4 l) filled with native soil was used with all pair-wise combinations of species and four density treatments (six replications). Vegetative tiller height, above- and belowground biomass were measured at the end of 16 weeks. Both of the OWB significantly inhibited at least one growth parameter of the three native grass species, while most of the native species did not inhibit growth of either OWB species. Growth of B. ischaemum was enhanced when grown in association with S. scoparium. Based upon the results of our study of OWB competitive superiority and previous research, many of the characteristics possessed by OWB are found to be in common with known invasive species. Hence, we propose that two OWB are competitively superior to three common native prairie species providing them with the ability to invade and threaten the native grasslands of the Central and Southern Great Plains. 相似文献
10.
J. A. Marchese L. C. Ming C. Ducatti F. Broetto E. T. Da Silva M. Leonardo 《Photosynthetica》2006,44(1):155-159
Isotope screening is a simple test for determining the photosynthetic pathway used by plants. The scope of this work was to
classify the photosynthetic type of some herbs and medicinal plants through studies of the carbon isotope composition (δ13C). Also, we propose the use of carbon isotope composition as a tool to control the quality of herbs and medicinal plants.
For studies of δ13C, δ13C‰ = [R (sample)/R (standard) − 1] × 10−3, dry leaves powdered in cryogenic mill were analyzed in a mass spectrometer coupled with an elemental analyzer for determining
the ratio R = 13CO2/12CO2. In investigation of δ13C of 55 species, 23 botanical families, and 44 species possessed a C3 photosynthetic type. Six species found among the botanical families Euphorbiaceae and Poaceae were C4 plants, and 5 species found among the botanical families Agavaceae, Euphorbiaceae, and Liliaceae possessed CAM-type photosynthesis.
Carbon isotope composition of plants can be used as quality control of herbs and medicinal plants, allowing the identification
of frauds or contaminations. Also, the information about the photosynthetic type found for these plants can help in introducing
and cultivating exotic and wild herbs and medicinal plants. 相似文献
11.
In a seasonally dry tropical region the water use efficiency (WUE) of three grasses (C3 winter annualPolypogon monspeliensis, C4 perennialDichanthium annulatum and C4 warm seasonal annualEchinochloa colonum) was evaluated during summer and winter under nine experimental conditions (3 soil moisture×3 herbage removal). Generally leaf water status and transpiration rate decreased with soil moisture stress and increased with clipping intensity. During winter the transpiration rate of Dichanthium was much lower than that of Polypogon and its own rate in summer. Both soil moisture stress and clipping intensity increased the WUE in all instances. Despite differences in photosynthetic type, growing season and life form, these grasses exhibited broadly similar positive relationships, across nine treatments for WUE: soil moisture stress, and water consumption: production. The range of WUE (g. mm–1) calculated on TNP through the nine treatments was: summer—Dichanthium 2.9–10.0, Echinochloa 2.0–6.7; winter—Dichanthium 4.3–36.3, Polypogon 1.9–12.0. 相似文献
12.
13.
Codron J Codron D Sponheimer M Kirkman K Duffy KJ Raubenheimer EJ Mélice JL Grant R Clauss M Lee-Thorp JA 《Proceedings. Biological sciences / The Royal Society》2012,279(1737):2433-2441
Longitudinal studies have revealed how variation in resource use within consumer populations can impact their dynamics and functional significance in communities. Here, we investigate multi-decadal diet variations within individuals of a keystone megaherbivore species, the African elephant (Loxodonta africana), using serial stable isotope analysis of tusks from the Kruger National Park, South Africa. These records, representing the longest continuous diet histories documented for any extant species, reveal extensive seasonal and annual variations in isotopic--and hence dietary--niches of individuals, but little variation between them. Lack of niche distinction across individuals contrasts several recent studies, which found relatively high levels of individual niche specialization in various taxa. Our result is consistent with theory that individual mammal herbivores are nutritionally constrained to maintain broad diet niches. Individual diet specialization would also be a costly strategy for large-bodied taxa foraging over wide areas in spatio-temporally heterogeneous environments. High levels of within-individual diet variability occurred within and across seasons, and persisted despite an overall increase in inferred C(4) grass consumption through the twentieth century. We suggest that switching between C(3) browsing and C(4) grazing over extended time scales facilitates elephant survival through environmental change, and could even allow recovery of overused resources. 相似文献
14.
M. J. Earnshaw K. A. Carver T. C. Gunn K. Kerenga V. Harvey H. Griffiths M. S. J. Broadmeadow 《Oecologia》1990,84(2):280-288
Summary A total of 22 grass species were examined from 5 sites spanning the altitudinal range 1550–4350 m.a.s.l. The presence of the C3 or C4 photosynthetic pathway was determined from 13C values and chilling tolerance was assessed on the basis of electrolyte leakage from leaf slices incubated on melting ice. Most of the grasses studied at the lower altitude sites of 1550 m.a.s.l. (annual mean of daily minimum temperature, 14.6° C) and 2600 m.a.s.l. (9.4° C) possessed C4 photosynthesis and were chill-sensitive. The single except ion was Agrostis avenacea, a montane chill-resistant C3 species which occurred at 2600 m.a.s.l. The three species apparently most sensitive to chilling were Ischaemum polystachyum, Paspalum conjugatum and Saccharum robustum, all occurring at 1550 m.a.s.l. At the higher altitude sites of 3280 (5.6° C), 3580 (4.0° C) and 4350 (–0.7°C) m.a.s.l., most of the grasses exhibited C3 photosynthesis and were chill-resistant. However, an Upland population of the C4 species, Miscanthus floridulus was found at 3280 m.a.s.l. which had acquired chill-resistance as confirmed by additional in vivo variable chlorophyll fluorescence measurements. Cell sap osmotic potential values of the upland grasses at altitudes of 3280–4350 m.a.s.l. were lower (–8.1 to –19.8 bars) than values in grasses from 1550 and 2600 m.a.s.l. (–3.9 to –7.5 bars) due mainly to the presence of non-electrolyte osmoticants, which may be involved in frost avoidance mechanism(s).Abbreviations ABA abscisic acid - FR the maximal rate of rise of induced chlorophyll fluorescence - s osmotic potential 相似文献
15.
Summary Two C3 grasses (Hordeum vulgare L., Avena sativa L.) and two C4 grasses (Panicum miliaceum L., Panicum crus-galli L.) were cultivated in standard soil in the open air in pure cultures and in various mixed cultures at low and high nitrogen fertilization levels. After three months the dry weight, length and nitrogen content of the aboveground and below-ground parts of the plants and the shoot/root ratios were determined. Hordeum vulgare was the most successful species irrespective of the nitrogen fertilization level, and also exhibited in most cases the highest nitrogen concentrations. Panicum miliaceum, on the other hand, was the species least able to compete. The production of biomass was reduced in cultures growing under nitrogen starvation conditions, this phenomenon being more pronounced with respect to the C4 than to the C3 species. The decrease in the production of biomass at low N conditions was most drastic with Panicum crus-galli, the species with the lowest nitrogen content and thus assumed to be best adapted to nitrogen starvation conditions. In cultures growing at low nitrogen fertilization levels the shoot/root ratios of all species.shifted in favour of an increasing root proportion. The extent of this shift, however, differed from species to species. 相似文献
16.
Aim At a regional scale, across southern Africa, woody thickening of savannas is becoming increasingly widespread. Using coupled vegetation and faunal responses (ants), we explore whether major changes in woody cover in savannas represent an increase in the density of savanna trees (C4 grass layer remains intact) or a ‘regime shift’ in system state from savanna to thicket (=dry forest) where broad‐leaved, forest‐associated trees shade out C4 grasses. Location Hluhluwe Game Reserve, South Africa. Methods We sampled paired open (low woody cover) and closed (high cover that have undergone an increase in tree density) sites. Vegetation was sampled using belt transects, and a combination of pitfall trapping and Winkler sampling was used for ants. Results Closed habitats did not simply contain a higher density of woody savanna species, but differed significantly in structure, functional composition (high prevalence of broad‐leaved trees, discontinuous C4 grasses) and system properties (e.g. low flammability). Ant assemblage composition reflected this difference in habitat. The trophic structure of ant assemblages in the two habitats revealed a functional shift with much higher abundances of predatory species in the closed habitat. Main conclusions The predominance of species with forest‐associated traits and concomitant reduction of C4 grasses in closed sites indicate that vegetation has undergone a shift in fundamental system state (to thicket), rather than simply savanna thickening. This biome shift has cascading functional consequences and implications for biodiversity conservation. The potential loss of many specialist savanna plant species is especially concerning, given the spatial extent and speed of this vegetation switch. Although it is not clear how easily the habitat switch can be reversed and how stable the thicket habitats are, it is likely in the not‐too‐distant future that conservation managers will be forced to make decisions on whether to actively maintain savannas. 相似文献
17.
Summary We tested the hypothesis that C4 grasses are inferior to C3 grasses as host plants for herbivorous insects by measuring the relative performance of larvae of a graminivorous lepidopteran, Paratrytone melane (Hesperiidae), fed C3 and C4 grasses. Relative growth rates and final weights were higher in larvae fed a C3 grass in Experiment I. However, in two additional experiments, relative growth rates and final weights were not significantly different in larvae fed C3 and C4 grasses. We examined two factors which are believed to cause C4 grasses to be of lower nutritional value than C3 grasses: foliar nutrient levels and nutrient digestibility. In general, foliar nutrient levels were higher in C3 grasses. In Experiment I, protein and soluble carbohydrates were digested from a C3 and a C4 grass with equivalent efficiencies. Therefore, differences in larval performance are best explained by higher nutrient levels in the C3 grass in this experiment. In Experiment II, soluble carbohydrates were digested with similar efficiencies from C3 and C4 grasses but protein was digested with greater efficiency from the C3 grasses. We conclude (1) that the bundle sheath anatomy of C4 grasses is not a barrier to soluble carbohydrate digestion and does not have a nutritionally significant effect on protein digestion and (2) that P. melane may consume C4 grasses at compensatory rates. 相似文献
18.
Summary The growth and photosynethetic responses to atmospheric CO2 enrichment of 4 species of C4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO2 enrichment would yield proportionally greater growth enhancement in the C4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 l 1-1 CO2 and 1,000 or 150 mol m-2 s-1 photosynthetic photon flux density (PPFD). An increase in CO2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO2. Plants grown in CO2-enriched atmosphere had lower photosynthetic capacity relative to the low CO2 grown plants when exposed to lower CO2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO2 compensation point for photosynthesis. 相似文献
19.
Plant species and functional groups of species show marked differences in photosynthesis and growth in relation to rising atmospheric CO2 concentrations through the range of the 30 % increase of the recent past and the 100 % increase since the last glaciation. A large shift was found in the compositional mix of 26 species of C3's and 17 species of C4's grown from a native soil seed bank in a competitive mode along a CO2 gradient that approximated the CO2 increase of the past 150 years and before. The biomass of C3's increased from near zero to 50 % of the total while that of the C4's was reduced 25 % as CO2 levels approached current ambient. The proposition that acclimation to rising CO2 will largely negate the fertilization effect of higher CO2 levels on C3's is not supported. No signs of photosynthetic acclimation were evident forAvena sativa, Prosopis glandulosa, andSchizachyrium scoparium plants grown in subambient CO2. The effects of changing CO2 levels on vegetation since the last glaciation are thought to have been at least as great, if not greater, than those which should be expected for a doubling of current CO2 levels. Atmospheric CO2 concentrations below 200 ppm are thought to have been instrumental in the rise of the C4 grasslands of North America and other extensive C4 grasslands and savannas of the world. Dramatic invasion of these areas by woody C3 species are accompanying the historical increase in atmospheric CO2 concentration now in progress. 相似文献
20.
Jason P. Londo Nonnatus S. Bautista Cynthia L. Sagers E. Henry Lee Lidia S. Watrud 《Annals of botany》2010,105(6):957-965
MethodsMonocultures of the grass species were grown in a fully factorial block design combining plant species, cutting frequency and N supply as factors.ConclusionsVariations in ANPP of species in response to an increase in cutting frequency and a decrease in N supply are controlled by a group of traits, rather than by one individual trait. Incorporating plasticity of the individual traits into these trait combinations was the key to explaining species'' productivity responses, accounting for up to 89 % of the total variability in response to the changes in N supply. 相似文献