首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Incubation of isolated rat hepatocytes with oxytocin produces a time- and dose-dependent inactivation of glycogen synthase. Such inactivation is associated with an increase in the phosphorylation state of the 88 kDa subunit of the enzyme, as observed after electrophoretic analysis of the 32P-labelled enzyme isolated by immunoprecipitation from cells incubated with [32P]phosphate. CNBr cleavage of the immunoprecipitated glycogen synthase showed that multiple sites were phosphorylated after exposure of the cells to the hormone. The effect of oxytocin on hepatocyte glycogen synthase activity was not observed in the absence of extracellular Ca2+. Inactivation of glycogen synthase by oxytocin was partially abolished in the presence of insulin. These results indicate that the effects of oxytocin on glycogen synthase from rat hepatocytes are similar to those observed for other Ca2+-mediated glycogenolytic hormones, such as vasopressin.  相似文献   

2.
cGMP-dependent protein kinase phosphorylates and inactivates RhoA   总被引:15,自引:0,他引:15  
Small GTPase Rho and cGMP/cGMP-dependent protein kinase (cGK) pathways exert opposing effects in specific systems such as vascular contraction and growth. However, the direct interaction between these pathways has remained elusive. We demonstrate that cGK phosphorylates RhoA in vitro at Ser188, the same residue phosphorylated by cAMP-dependent protein kinase. In HeLa cells transfected with constitutively active cGK (C-cGK), stress fiber formation induced by lysophosphatidic acid or V14RhoA was blocked. By contrast, C-cGK failed to inhibit stress fiber formation in cells transfected with mutant RhoA with substitution of Ser188 to Ala. C-cGK did not affect actin reorganization induced by Rac1 or Rho-associated kinase, one of the effectors for RhoA. Furthermore, C-cGK expression inhibited the membrane translocation of RhoA. Collectively, our findings suggest that cGK phosphorylates RhoA at Ser188 and inactivates RhoA signaling. The physiological relevance of the direct interaction between RhoA and cGK awaits further investigation.  相似文献   

3.
Smooth muscle contraction is initiated by a rise in intracellular calcium, leading to activation of smooth muscle myosin light chain kinase (MLCK) via calcium/calmodulin (CaM). Activated MLCK then phosphorylates the regulatory myosin light chains, triggering cross-bridge cycling and contraction. Here, we show that MLCK is a substrate of AMP-activated protein kinase (AMPK). The phosphorylation site in chicken MLCK was identified by mass spectrometry to be located in the CaM-binding domain at Ser(815). Phosphorylation by AMPK desensitized MLCK by increasing the concentration of CaM required for half-maximal activation. In primary cultures of rat aortic smooth muscle cells, vasoconstrictors activated AMPK in a calcium-dependent manner via CaM-dependent protein kinase kinase-beta, a known upstream kinase of AMPK. Indeed, vasoconstrictor-induced AMPK activation was abrogated by the STO-609 CaM-dependent protein kinase kinase-beta inhibitor. Myosin light chain phosphorylation was increased under these conditions, suggesting that contraction would be potentiated by ablation of AMPK. Indeed, in aortic rings from mice in which alpha1, the major catalytic subunit isoform in arterial smooth muscle, had been deleted, KCl- or phenylephrine-induced contraction was increased. The findings suggest that AMPK attenuates contraction by phosphorylating and inactivating MLCK. This might contribute to reduced ATP turnover in the tonic phase of smooth muscle contraction.  相似文献   

4.
5.
In addition to acetyl-CoA carboxylase and HMG-CoA reductase, the AMP-activated protein kinase phosphorylates glycogen synthase, phosphorylase kinase, hormone-sensitive lipase and casein. A number of other substrates for the cyclic AMP-dependent protein kinase, e.g., L-pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, are not phosphorylated at significant rates. Examination of the sites phosphorylated on acetyl-CoA carboxylase, hormone-sensitive lipase, glycogen synthase and phosphorylase kinase suggests a consensus recognition sequence in which the serine residue phosphorylated by the AMP-activated protein kinase has a hydrophobic residue on the N-terminal side (i.e., at -1) and at least one arginine residue at -2, -3 or -4. Substrates for cyclic AMP-dependent protein kinase which lack the hydrophobic residue at -1 are not substrates for the AMP-activated protein kinase.  相似文献   

6.
7.
Structural basis for glycogen recognition by AMP-activated protein kinase   总被引:4,自引:0,他引:4  
AMP-activated protein kinase (AMPK) coordinates cellular metabolism in response to energy demand as well as to a variety of stimuli. The AMPK beta subunit acts as a scaffold for the alpha catalytic and gamma regulatory subunits and targets the AMPK heterotrimer to glycogen. We have determined the structure of the AMPK beta glycogen binding domain in complex with beta-cyclodextrin. The structure reveals a carbohydrate binding pocket that consolidates all known aspects of carbohydrate binding observed in starch binding domains into one site, with extensive contact between several residues and five glucose units. beta-cyclodextrin is held in a pincer-like grasp with two tryptophan residues cradling two beta-cyclodextrin glucose units and a leucine residue piercing the beta-cyclodextrin ring. Mutation of key beta-cyclodextrin binding residues either partially or completely prevents the glycogen binding domain from binding glycogen. Modeling suggests that this binding pocket enables AMPK to interact with glycogen anywhere across the carbohydrate's helical surface.  相似文献   

8.
AMP-activated protein kinase phosphorylation of endothelial NO synthase   总被引:23,自引:0,他引:23  
The AMP-activated protein kinase (AMPK) in rat skeletal and cardiac muscle is activated by vigorous exercise and ischaemic stress. Under these conditions AMPK phosphorylates and inhibits acetyl-coenzyme A carboxylase causing increased oxidation of fatty acids. Here we show that AMPK co-immunoprecipitates with cardiac endothelial NO synthase (eNOS) and phosphorylates Ser-1177 in the presence of Ca2+-calmodulin (CaM) to activate eNOS both in vitro and during ischaemia in rat hearts. In the absence of Ca2+-calmodulin, AMPK also phosphorylates eNOS at Thr-495 in the CaM-binding sequence, resulting in inhibition of eNOS activity but Thr-495 phosphorylation is unchanged during ischaemia. Phosphorylation of eNOS by the AMPK in endothelial cells and myocytes provides a further regulatory link between metabolic stress and cardiovascular function.  相似文献   

9.
10.
The Snf1/AMP-activated protein kinase (AMPK) family is important for metabolic regulation and is highly conserved from yeast to mammals. The upstream kinases are also functionally conserved, and the AMPK kinases LKB1 and Ca2+/calmodulin-dependent protein kinase kinase activate Snf1 in mutant yeast cells lacking the native Snf1-activating kinases, Sak1, Tos3, and Elm1. Here, we exploited the yeast genetic system to identify members of the mammalian AMPK kinase family by their function as Snf1-activating kinases. A mouse embryo cDNA library in a yeast expression vector was used to transform sak1Delta tos3Delta elm1Delta yeast cells. Selection for a Snf+ growth phenotype yielded cDNA plasmids expressing LKB1, Ca2+/calmodulin-dependent protein kinase kinase, and transforming growth factor-beta-activated kinase (TAK1), a member of the mitogen-activated protein kinase kinase kinase family. We present genetic and biochemical evidence that TAK1 activates Snf1 protein kinase in vivo and in vitro. We further show that recombinant TAK1, fused to the activation domain of its binding partner TAB1, phosphorylates Thr-172 in the activation loop of the AMPK catalytic domain. Finally, expression of TAK1 and TAB1 in HeLa cells or treatment of cells with cytokines stimulated phosphorylation of Thr-172 of AMPK. These findings indicate that TAK1 is a functional member of the Snf1/AMPK kinase family and support TAK1 as a candidate for an authentic AMPK kinase in mammalian cells.  相似文献   

11.
The Drosophila gene product Wingless (Wg) is a secreted glycoprotein and a member of the Wnt gene family. Genetic analysis of Drosophila epidermal development has defined a putative paracrine Wg signalling pathway involving the zeste-white 3/shaggy (zw3/sgg) gene product. Although putative components of Wg- (and by inference Wnt-) mediated signalling pathways have been identified by genetic analysis, the biochemical significance of most factors remains unproven. Here we show that in mouse 10T1/2 fibroblasts the activity of glycogen synthase kinase-3 (GSK-3), the murine homologue of Zw3/Sgg, is inactivated by Wg. This occurs through a signalling pathway that is distinct from insulin-mediated regulation of GSK-3 in that Wg signalling to GSK-3 is insensitive to wortmannin. Additionally, Wg-induced inactivation of GSK-3 is sensitive to both the protein kinase C (PKC) inhibitor Ro31-8220 and prolonged pre-treatment of 10T1/2 fibroblasts with phorbol ester. These findings provide the first biochemical evidence in support of the genetically defined pathway from Wg to Zw3/Sgg, and suggest a previously uncharacterized role for a PKC upstream of GSK-3/Zw3 during Wnt/Wg signal transduction.  相似文献   

12.
A number of proteins were tested as potential substrates for purified rabbit liver calmodulin-dependent glycogen synthase kinase. It was found that liver phenylalanine hydroxylase and several brain proteins including tyrosine hydroxylase, microtubule-associated protein 2, and synapsin I were readily phosphorylated. Brain tubulin was very poorly phosphorylated. These results suggest that calmodulin-dependent glycogen synthase kinase may be a more general protein kinase involved in the regulation of several cellular Ca2+-dependent functions.  相似文献   

13.
14.
Role of protein kinase C in the regulation of rat liver glycogen synthase   总被引:1,自引:0,他引:1  
Rat liver glycogen synthase was phosphorylated by purified protein kinase C in a Ca2+- and phospholipid-dependent fashion to 1-1.4 mol PO4/subunit. Analysis of the 32P-labeled tryptic peptides derived from the phosphorylated synthase by isoelectric focusing and two-dimensional peptide mapping revealed the presence of a major radioactive peptide. The sites in liver synthase phosphorylated by protein kinase C appears to be different from those phosphorylated by other kinases. Prior phosphorylation of the synthase by protein kinase C has no significant effect on the subsequent phosphorylation by glycogen synthase (casein) kinase-1 or kinase Fa, but prevents the synthase from further phosphorylation by cAMP-dependent protein kinase, Ca2+/calmodulin-dependent protein kinase, phosphorylase kinase, or casein kinase-2. Additive phosphorylation of liver glycogen synthase can be observed by the combination of protein kinase C with the former set of kinases but not with the latter. Phosphorylation of liver synthase by protein kinase C alone did not cause an inactivation nor did the combination of this kinase with glycogen synthase (casein) kinase-1 or kinase Fa produce a synergistic effect on the inactivation of the synthase. Based on these findings we conclude that the phorbol ester-induced inactivation of glycogen synthase previously observed in hepatocytes cannot be accounted for entirely by the activation of protein kinase C.  相似文献   

15.
16.
A rabbit liver protein kinase (PC0.7), able to phosphorylate glycogen synthase and phosvitin, has been extensively purified. The enzyme had apparent Mr = 170,000-190,000 as judged by gel filtration and was associated with two major polypeptide species, alpha (Mr = 43,000) and beta (Mr = 25,000). Two other polypeptides, Mr = 38,000 and Mr = 35,000, were also detected. Treatment with trypsin led to an enzyme composed only of polypeptides of Mr = 35,000 and Mr = 25,000. The beta-polypeptide underwent autophosphorylation when incubated with Mg2+ and ATP or GTP. The protein kinase was effective in utilizing both ATP and GTP as the phosphoryl donor (apparent Km values 5-11 microM and 9-19 microM, respectively). The enzyme phosphorylated phosvitin, casein, and glycogen synthase but not histone or phosphorylase and was inhibited by heparin. Phosphorylation of glycogen synthase proceeded to approximately 0.5 phosphate/subunit with little inactivation of the glycogen synthase. The phosphorylation occurred predominantly in a 21,000-dalton CNBr fragment of glycogen synthase that had been previously shown to reside toward the COOH terminus of the molecule. The liver PC0.7 appeared very similar to an analogous enzyme isolated from rabbit muscle (DePaoli-Roach, A. A., Ahmad, Z., and Roach, P. J. (1981) J. Biol. Chem. 256, 8955-8962). The present work, therefore, provides a point of contact between the Ca2+ and cyclic nucleotide-independent glycogen synthase kinases of rabbit liver and muscle.  相似文献   

17.
18.
A rabbit liver cAMP-independent glycogen synthase kinase has been purified 4500-fold to a specific activity of 2.23 mumol of 32P incorporated per min per mg of protein using ion exchange chromatography on DEAE-Sephacel and phosphocellulose, gel filtration chromatography on Sepharose 6B, and affinity chromatography on calmodulin-Sepharose. This synthase kinase, which was completely dependent on the presence of calmodulin (apparent K0.5 = 0.1 microM) and calcium for activity, also catalyzed the phosphorylation of purified smooth muscle myosin light chain but not of smooth muscle myosin. Using 0.5 mM ATP, a maximal rate of phosphorylation of glycogen synthase was achieved in the presence of 10 mM magnesium acetate with a pH optimum of 7.8. Gel filtration experiments indicated a Stokes radius of about 70 A and sucrose density gradient centrifugation data gave a sedimentation coefficient of 10.6 S. A molecular weight of approximately 300,000 was calculated. A definitive subunit structure was not determined, but major bands observed after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate corresponded to a doublet at 50,000 to 53,000. The calmodulin-dependent glycogen synthase kinase incorporated about 1 mol of 32P per mol of synthase subunit into sites 2 and 1b associated with a decrease in the synthase activity ratio from 0.8 to about 0.4. The calmodulin-dependent glycogen synthase kinase may mediate the effects of alpha-adrenergic agonists, vasopressin, and/or angiotensin II on glycogen synthase in liver.  相似文献   

19.
Phosphorylation of rat liver glycogen synthase by phosphorylase kinase   总被引:2,自引:0,他引:2  
Phosphorylation of rat liver glycogen synthase by rabbit skeletal muscle phosphorylase kinase results in the incorporation of approximately 0.8-1.2 mol of PO4/subunit. Analyses of the tryptic peptides by isoelectric focusing and thin layer chromatography reveal the presence of two major 32P-labeled peptides. Similar results were obtained when the synthase was phosphorylated by rat liver phosphorylase kinase. This extent of phosphorylation does not result in a significant change in the synthase activity ratio. In contrast, rabbit muscle glycogen synthase is readily inactivated by rabbit muscle phosphorylase kinase; this inactivation is further augmented by the addition of rabbit muscle cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1. Addition of cAMP-dependent protein kinase after initial phosphorylation of liver synthase with phosphorylase kinase, however, does not result in an inactivation or additional phosphorylation. The lack of additive phosphorylation under this condition appears to result from the phosphorylation of a common site by these two kinases. Partial inactivation of liver synthase can be achieved by sequential phosphorylation with phosphorylase kinase followed by synthase (casein) kinase-1. Under this assay condition, the phosphate incorporation into the synthase is additively increased and the synthase activity ratio (-glucose-6-P/+glucose-6-P) is reduced from 0.95 to 0.6. Nevertheless, if the order of the addition of these two kinases is reversed, neither additive phosphorylation nor inactivation of the synthase is observed. Prior phosphorylation of the synthase by phosphorylase kinase transforms the synthase such that it becomes a better substrate for synthase (casein) kinase-1 as evidenced by a 2- to 4-fold increase in the rate of phosphorylation. This increased rate of phosphorylation of the synthase appears to result from the rapid phosphorylation of a site neighboring that previously phosphorylated by phosphorylase kinase.  相似文献   

20.
Although the novel pancreatic peptide amylin has been shown to induce insulin resistance and decrease glucose uptake, the mechanism of amylin's actions is unknown. The following study evaluated the effect of amylin on glycogen metabolism in isolated soleus muscles in the presence and absence of insulin (200 microU/ml). Total glycogen, glycogen phosphorylase and glycogen synthases activities, and cAMP levels were measured. Total glycogen levels were significantly decreased by amylin (100 nM) in fed or fasted muscles under conditions of insulin stimulation. Amylin (100 nM) activated glycogen phosphorylase by as much as 100% and decreased glycogen synthase activity by over 60%, depending on the metabolic state of the muscles. These effects where comparable to those of the beta adrenergic agonist isoproterenol. A lower concentration of amylin (1 nM) did not significantly affect glycogen levels, glycogen phosphorylase, or glycogen synthase activity. Cyclic AMP levels were increased two-fold by isoproterenol but were unaffected by amylin. In conclusion, amylin induces glycogenolysis by decreasing glycogen synthesis and increasing breakdown. The effect of amylin on enzyme activity is consistent with a phosphorylation-dependent mechanism. It is likely that these events are mediated via a cAMP independent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号