首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The RAS and RHO family comprise two major branches of the RAS superfamily of small GTPases. These proteins function as regulated molecular switches and control cytoplasmic signaling networks that regulate a diversity of cellular processes, including cell proliferation and cell migration. In the early 1980s, mutationally activated RAS genes encoding KRAS, HRAS and NRAS were discovered in human cancer and now comprise the most frequently mutated oncogene family in cancer. Only recently, exome sequencing studies identified cancer-associated alterations in two RHO family GTPases, RAC1 and RHOA. RAS and RHO proteins share significant identity in their amino acid sequences, protein structure and biochemistry. Cancer-associated RAS mutant proteins harbor missense mutations that are found primarily at one of three mutational hotspots (G12, G13 and Q61) and have been identified as gain-of-function oncogenic alterations. Although these residues are conserved in RHO family proteins, the gain-of-function mutations found in RAC1 are found primarily at a distinct hotspot. Unexpectedly, the cancer-associated mutations found with RHOA are located at different hotspots than those found with RAS. Furthermore, since the RHOA mutations suggested a loss-of-function phenotype, it has been unclear whether RHOA functions as an oncogene or tumor suppressor in cancer development. Finally, whereas RAS mutations are found in a broad spectrum of cancer types, RHOA and RAC1 mutations occur in a highly restricted range of cancer types. In this review, we focus on RHOA missense mutations found in cancer and their role in driving tumorigenesis, with comparisons to cancer-associated mutations in RAC1 and RAS GTPases.  相似文献   

2.
Mutation of RAS genes is one of the most common oncogenic alterations in cancer and acquisition of activating RAS mutations has been demonstrated to cause progression of colorectal adenoma to cancer. The aim of this study was to identify changes in the proteome of the intermediate-stage colorectal cancer cell line Caco2, induced by ectopic expression of two distinct RAS proteins, KRAS(V12) and HRAS(V12), in their mutated, constitutively active form. Using 2D-gel electrophoresis, followed by LC-MS/MS we identified almost 200 differentially expressed proteins in pair-wise comparisons of Caco2 vs Caco2-KRAS(V12) and Caco2 vs Caco2-HRAS(V12). Although many of the affected proteins were unique for each pair, there were also substantial similarities. Interestingly, transformation by the mutant KRAS(V12) gene resulted in elevated expression levels and activity of endogenous H-ras protein. Silencing the latter with a specific RNAi reversed several proteomic changes observed in KRAS(V12)-transformed cells, suggesting that oncogenic K-ras partly exerts its effects through endogenous H-ras activation. Alterations in the expression of cytoskeletal and cell adhesion proteins, caused by HRAS siRNA treatment, correlated with a reduction in the invasive properties of Caco2-KRAS(V12) cells. Our data suggest a novel interplay between K-ras and H-ras, with possible implications for colorectal carcinogenesis.  相似文献   

3.
Constitutive activation of the phosphatidylinositol-3-OH kinase (PI3K) and RAS signaling pathways are important events in tumor formation. This is illustrated by the frequent genetic alteration of several key players from these pathways in a wide variety of human cancers. Here, we report a detailed sequence analysis of the PTEN, PIK3CA, KRAS, HRAS, NRAS, and BRAF genes in a collection of 40 human breast cancer cell lines. We identified a surprisingly large proportion of cell lines with mutations in the PI3K or RAS pathways (54% and 25%, respectively), with mutants for each of the six genes. The PIK3CA, KRAS, and BRAF mutation spectra of the breast cancer cell lines were similar to those of colorectal cancers. Unlike in colorectal cancers, however, mutational activation of the PI3K pathway was mutually exclusive with mutational activation of the RAS pathway in all but 1 of 30 mutant breast cancer cell lines (P = 0.001). These results suggest that there is a fine distinction between the signaling activators and downstream effectors of the oncogenic PI3K and RAS pathways in breast epithelium and those in other tissues.  相似文献   

4.
RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.  相似文献   

5.
6.
Prostate cancer is a common malignancy that develops by structural mutation(s) and/or other genetic alterations in specific genes.The G to T transversions in codon 12 and C to T transitions in codon 13 of KRAS proto-oncogene are predominant point mutations that occur in about 20% of different cancers in human. In the current study it was aimed to investigate the prevalence and predictive significance of KRAS mutations in patients with prostate carcinomas. In a total of 30 fresh tumoural tissue specimens were investigated in patients with prostate carcinoma. All tumoural specimens were histo-pathologically diagnosed and genotyped for codon 12, 13 KRAS point mutations by reverse hybridisation and direct sequencing methods. KRAS mutations were found in 12 (40%) samples with 29 samples deriving from adenocarcinomas and 1 sample was small cell prostate carcinoma. In 1 (3.44%) sample codon 12 was found to be mutated and in 2 (6.8%) samples codon 13 and in 9 (31%) samples combined codon 12 and 13 were found to be mutated particularly in higher grade of tumoural tissues. Our study, based on representative collection of human prostate tumours, indicates that combined mutations in codons 12 and 13 KRAS are relatively infrequent and most commonly occur in prostate carcinomas.  相似文献   

7.
《Translational oncology》2022,15(12):101230
KRAS is mutated in approximately 25% of Non-small Cell Lung Cancer (NSCLC) patients and first specific inhibitors showed promising responses that may be improved by concurrent interference with downstream signaling pathways. Cell lines exhibiting KRAS mutations show specific sensitivities to modulators affecting glucose utilization, signal transduction and cell survival. Novel SOS1-directed inhibitors with a broader anticancer coverage such as BAY-293 and BI-3406 inhibit KRAS through the hindrance of SOS1-KRAS interactions. The aim of this study was to check the putative synergy of BAY-293 with modulators having revealed specific vulnerabilities of KRAS-mutated cell lines. The present investigation tested the cytotoxicity of BAY-293 combinations against a series of Osimertinib-resistant primary NSCLC cell lines using MTT tests and calculation of combination indices according to the Chou-Talalay method. The results show that BAY-293 synergizes with modulators of glucose metabolism, inhibitors of cellular proliferation, several chemotherapeutics and a range of diverse modulators, thus corroborating the chemosensitivities of cells expressing mutated KRAS. In conclusion, BAY-293 exerts cytotoxicity with a wide range of drugs against Osimertinib-resistant primary NSCLC cell lines. The administration of pan-KRAS inhibitors alone may be limited in vivo by toxicity to normal tissues but made feasible by its use as part of suitable drug combinations. This study shows that BAY-293 combinations are active against NSCLC cells not further amenable to mutated EGFR-directed targeted therapy and results likewise hold relevance for pancreatic and colon cancer.  相似文献   

8.
《Translational oncology》2021,14(12):101230
KRAS is mutated in approximately 25% of Non-small Cell Lung Cancer (NSCLC) patients and first specific inhibitors showed promising responses that may be improved by concurrent interference with downstream signaling pathways. Cell lines exhibiting KRAS mutations show specific sensitivities to modulators affecting glucose utilization, signal transduction and cell survival. Novel SOS1-directed inhibitors with a broader anticancer coverage such as BAY-293 and BI-3406 inhibit KRAS through the hindrance of SOS1-KRAS interactions. The aim of this study was to check the putative synergy of BAY-293 with modulators having revealed specific vulnerabilities of KRAS-mutated cell lines. The present investigation tested the cytotoxicity of BAY-293 combinations against a series of Osimertinib-resistant primary NSCLC cell lines using MTT tests and calculation of combination indices according to the Chou-Talalay method. The results show that BAY-293 synergizes with modulators of glucose metabolism, inhibitors of cellular proliferation, several chemotherapeutics and a range of diverse modulators, thus corroborating the chemosensitivities of cells expressing mutated KRAS. In conclusion, BAY-293 exerts cytotoxicity with a wide range of drugs against Osimertinib-resistant primary NSCLC cell lines. The administration of pan-KRAS inhibitors alone may be limited in vivo by toxicity to normal tissues but made feasible by its use as part of suitable drug combinations. This study shows that BAY-293 combinations are active against NSCLC cells not further amenable to mutated EGFR-directed targeted therapy and results likewise hold relevance for pancreatic and colon cancer.  相似文献   

9.
In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118) have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S) in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.  相似文献   

10.
《Journal of molecular biology》2019,431(19):3706-3717
Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.  相似文献   

11.
Alterations in cellular energy metabolism play critical roles in colorectal cancer (CRC). These alterations, which correlate to KRAS mutations, have been identified as energy metabolism signatures. This review summarizes the relationship between colorectal tumors associated with mutated KRAS and energy metabolism, especially for the deregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review will concentrate on the role of metabolic genes, factors and signaling pathways, which are coupled with the primary energy source connected with the KRAS mutation that induces metabolic alterations. Strategies for targeting energy metabolism in mutated KRAS CRC are also introduced. In conclusion, deregulated energy metabolism has a close relationship with KRAS mutations in colorectal tumors. Therefore, selective inhibitors, agents against metabolic targets or KRAS signaling, may be clinically useful for colorectal tumor treatment through a patient-personalized approach.  相似文献   

12.
13.
Point mutations in the cellular homologues HRAS, KRAS2, and NRAS of the viral Harvey and Kirsten rat sarcoma virus oncogenes are commonly involved in the onset of malignancies in humans and other species such as dog, mouse, and rat. Most often, three particular hot-spot codons are affected, with one amino acid exchange being sufficient for the induction of tumor growth. While RAS genes have been shown to play an important role in canine tumors such as non-small lung cell carcinomas, data about RAS mutations in canine fibrosarcomas as well as KRAS2 mutations in canine melanomas is sparse. To increase the number of tumors examined, we recently screened 13 canine fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot spots. The results were compared to the already existing data from other studies about these tumors in dogs.  相似文献   

14.
Alterations in cellular energy metabolism play a critical role in colorectal cancer (CRC), which has been identified as the definition of consensus molecular subtypes (CMSs), and CMS3 tumors exhibit energy metabolism signatures along with Kirsten rat sarcoma viral oncogene homolog (KRAS)-activating mutations. This review summarizes the relationship between CMS3 tumors associated with mutated KRAS and energy metabolism in CRC, especially for the dysregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review concentrates on the role of metabolic genes and factors and signaling pathways, which coupled with a primary energy source connected with the CMS3 associated with mutated KRAS, induce metabolic alterations. The strategies to target energy metabolism for the metabolic alterations in mutated KRAS CRC are also introduced. In conclusion, dysregulated energy metabolism has a close relationship with mutated KRAS in CMS3 tumors. Therefore, selective inhibitors or agents against metabolic targets or KRAS signaling may be clinically useful for CMS3 tumor treatment through a personalized approach for patients with cancer.  相似文献   

15.
Background and Aim: Pancreatic neuroendocrine tumor (pNET) is a clinically rare and heterogeneous group of tumors; its pharmacogenetic characteristics are not fully understood. This study was designed to examine the relationship between key gene variations and disease development and prognosis among Chinese patients with pNET.Methods: Various pNET associated genes such as DAXX/ATRX, KRAS, MEN1, PTEN, TSC2, SMAD4/DPC, TP53 and VHL were analyzed in high-throughput sequencing. The links between the gene mutations and the clinicopathological features and prognosis of the patients were determined.Results: The somatic mutation frequencies of the DAXX/ATRX, KRAS, MEN1, mTOR pathway genes (PTEN and TSC2), SMAD4/DPC, TP53, and VHL in Chinese pNET patients were 54.05%, 10.81%, 35.14%, 54.05%, 2.70%, 13.51%, and 40.54%, respectively, while the same figures in Caucasians pNET patients were 43%, 0%, 44%, 15%, 0%, 3%, and 0%, respectively. The numbers of mutated genes were from 0 to 6; 4 patients with more than 3 mutated genes had higher proliferation (Ki-67) index or nerve vascular invasion or organ involvement, but only 9 of 27 patients with 3 or few mutated genes had such features. Mutations in KRAS and DAXX/ATRX, but not other genes analyzed, were associated with a shortened survival.Conclusion: The mutation rates of these genes in Chinese pNET patients are different from those in Caucasians. A higher number of gene mutations and the DAXX/ATRX and KRAS gene mutations are correlated with a poor prognosis of patients with pNET.  相似文献   

16.
Mining for JAK-STAT mutations in cancer   总被引:1,自引:0,他引:1  
  相似文献   

17.
Defects in vital genes occur in a high percentage of human diseases, including cancer. Defects could be due to the accumulation of mutations in the genes leading to the production of faulty proteins. Although the biological significance of such mutant proteins still remains in question, recent experiments have demonstrated that genes overproducing faulty proteins are often associated with tumor cell growth. Thep53tumor suppressor gene is the most frequently mutated gene yet identified in human cancer. It is mutated in wide variety of human cancers. Missense mutations are common for thep53gene and are essential for the transforming ability of the oncogene. The wild-typep53gene may directly suppress cell growth or indirectly activate genes that are involved in growth suppression. Thus inactivation of wild-typep53by point mutation may contribute to transformation. Therefore, identification of such mutations have potential clinical implications. Recently, polymerase chain reaction-based advanced molecular techniques had a profound impact on the detection and identification of such mutations. These techniques are sensitive and quantitative tools for the study of the pathogenesis of neoplastic diseases at the single-cell level.  相似文献   

18.
Ras proteins control a variety of critical cellular processes, and somatic mutations in RAS genes (and other members of signaling networks regulated by Ras) are common in human malignancies. Ras proteins are guanosine triphosphate (GTP)-binding proteins that cycle between active GTP-bound and inactive guanosine diphosphate (GDP) bound conformations. Cancer-associated Ras mutations typically alter amino acids G12, G13 or Q61. These mutant Ras proteins display impaired GTPase activity and are resistant to GTPase activating proteins (GAPs). We and others recently discovered novel germline KRAS mutations in individuals diagnosed with Noonan or cardio-facio-cutanous (CFC) syndrome, two clinically overlapping disorders characterized by short stature, distinct facial anomalies, heart defects, and other developmental abnormalities. We found that the mutant K-Ras proteins encoded by NS-associated alleles have less pronounced biochemical defects than known Ras oncoproteins, which likely explains why these mutations are tolerated in the germline. Together with the recent findings of mutations in other members of the Ras signaling cascade in CFC syndrome and in Costello syndrome, another clinically related disorder, it is now clear that Noonan-like features are common phenotypic consequences of systemic deregulation of the Ras pathway. The discovery of germline mutations in this group of related genetic disorders underscores the pivotal role of the degree and duration of Ras activation in cell fate decisions during embryonic development and morphogenesis.  相似文献   

19.
《MABS-AUSTIN》2013,5(6):1571-1584
Individual or combinations of somatic mutations found in genes from colorectal cancers can redirect the effects of chemotherapy and targeted agents on cancer cell survival and, consequently, on clinical outcome. Novel therapeutics with mechanisms of action that are independent of mutational status would therefore fulfill a current unmet clinical need. Here the CEA and CD3 bispecific single-chain antibody MEDI-565 (also known as MT111 and AMG 211) was evaluated for its ability to activate T cells both in vitro and in vivo and to kill human tumor cell lines harboring various somatic mutations commonly found in colorectal cancers. MEDI-565 specifically bound to normal and malignant tissues in a CEA-specific manner, and only killed CEA positive cells. The BiTE® antibody construct mediated T cell-directed killing of CEA positive tumor cells within 6 hours, at low effector-to-target ratios which were independent of high concentrations of soluble CEA. The potency of in vitro lysis was dependent on CEA antigen density but independent of the mutational status in cancer cell lines. Importantly, individual or combinations of mutated KRAS and BRAF oncogenes, activating PI3KCA mutations, loss of PTEN expression, and loss-of-function mutations in TP53 did not reduce the activity in vitro. MEDI-565 also prevented growth of human xenograft tumors which harbored various mutations. These findings suggest that MEDI-565 represents a potential treatment option for patients with CEA positive tumors of diverse origin, including those with individual or combinations of somatic mutations that may be less responsive to chemotherapy and other targeted agents.  相似文献   

20.
Ras proteins regulate cell proliferation, survival and differentiation and are constitutively activated by somatic point mutations in many cancers. Previous studies of neurofibromatosis type 1 and Noonan syndrome also implicated hyperactive Ras in developmental disorders. Recently, germline mutations in H-RAS and K-RAS and in genes encoding other molecules in the Ras-Raf-MEK-ERK cascade were shown to underlie cases of Noonan, cardio-facio-cutaneous, and Costello syndromes. These disorders share phenotypic traits that include abnormal facial features, heart defects, and impaired growth and development. Many of these germline, disease-associated mutations encode novel Ras, Raf and MEK proteins. These studies underscore a crucial role of Ras signaling in human development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号