首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
传统豆酱发酵过程中细菌多样性动态   总被引:1,自引:0,他引:1  
葛菁萍  柴洋洋  陈丽  平文祥 《生态学报》2012,32(8):2532-2538
细菌在豆酱发酵过程中起到非常重要的作用,并与豆酱的风味和质量密切相关,因此研究豆酱中细菌的多样性具有重要意义。以自然发酵的豆酱样品为研究对象,采用细菌16S rDNA的部分可变区的PCR-DGGE技术对自然发酵豆酱样品的细菌群落组成和优势菌群进行研究。结果表明,传统豆酱发酵过程细菌群体中既有原始种群的减少和增长,也有次级种群的增多和演变。在整个发酵过程中,初期和末期以不可培养细菌为主,初期细菌群体快速演替,细菌种群多样性指数在发酵42 d和56 d达到两次高峰。  相似文献   

2.
Inventory and monitoring of wine microbial consortia   总被引:2,自引:0,他引:2  
The evolution of the wine microbial ecosystem is generally restricted to Saccharomyces cerevisiae and Oenococcus oeni, which are the two main agents in the transformation of grape must into wine by acting during alcoholic and malolactic fermentation, respectively. But others species like the yeast Brettanomyces bruxellensis and certain ropy strains of Pediococcus parvulus can spoil the wine. The aim of this study was to address the composition of the system more precisely, identifying other components. The advantages of the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach to wine microbial ecology studies are illustrated by bacteria and yeast species identification and their monitoring at each stage of wine production. After direct DNA extraction, PCR-DGGE was used to make the most exhaustive possible inventory of bacteria and yeast species found in a wine environment. Phylogenetic neighbor-joining trees were built to illustrate microbial diversity. PCR-DGGE was also combined with population enumeration in selective media to monitor microbial changes at all stages of production. Moreover, enrichment media helped to detect the appearance of spoilage species. The genetic diversity of the wine microbial community and its dynamics during winemaking were also described. Most importantly, our study provides a better understanding of the complexity and diversity of the wine microbial consortium at all stages of the winemaking process: on grape berries, in must during fermentation, and in wine during aging. On grapes, 52 different yeast species and 40 bacteria could be identified. The diversity was dramatically reduced during winemaking then during aging. Yeast and lactic acid bacteria were also isolated from very old vintages. B. bruxellensis and O. oeni were the most frequent.  相似文献   

3.
Kefir is a fermented milk-based beverage to which a number of health-promoting properties have been attributed. The microbes responsible for the fermentation of milk to produce kefir consist of a complex association of bacteria and yeasts, bound within a polysaccharide matrix, known as the kefir grain. The consistency of this microbial population, and that present in the resultant beverage, has been the subject of a number of previous, almost exclusively culture-based, studies which have indicated differences depending on geographical location and culture conditions. However, culture-based identification studies are limited by virtue of only detecting species with the ability to grow on the specific medium used and thus culture-independent, molecular-based techniques offer the potential for a more comprehensive analysis of such communities. Here we describe a detailed investigation of the microbial population, both bacterial and fungal, of kefir, using high-throughput sequencing to analyse 25 kefir milks and associated grains sourced from 8 geographically distinct regions. This is the first occasion that this technology has been employed to investigate the fungal component of these populations or to reveal the microbial composition of such an extensive number of kefir grains or milks. As a result several genera and species not previously identified in kefir were revealed. Our analysis shows that the bacterial populations in kefir are dominated by 2 phyla, the Firmicutes and the Proteobacteria. It was also established that the fungal populations of kefir were dominated by the genera Kazachstania, Kluyveromyces and Naumovozyma, but that a variable sub-dominant population also exists.  相似文献   

4.
The gastrointestinal tract is a dynamic ecosystem containing a complex microbial community. In this paper, the indigenous intestinal bacteria and the microbial fermentation profile particularly short chain fatty acids (SCFA), lactate, and ammonia concentrations are reviewed. The intestinal bacterial composition changes with age. The bacterial density of the small intestine increases with age and comprises of lactobacilli, streptococci, enterobacteria, fusobacteria and eubacteria. Strict anaerobes (anaerobic gram-positive cocci, Eubacterium spp., Clostridium spp., Lactobacillus spp., Fusobacterium spp. and Bacteroides) are predominating caecal bacteria in young broilers. Data from culture-based studies showed that bifidobacteria could not be isolated from young birds, but were recovered from four-week-old broilers. Caecal lactobacilli accounted for 1.5-24% of the caecal bacteria. Gene sequencing of caecal DNA extracts showed that the majority of bacteria belonged to Clostridiaceae. Intestinal bacterial community is influenced by the dietary ingredients, nutrient levels and physical structure of feed. SCFA and other metabolic products are affected by diet formulation and age. Additional studies are required to know the bacterial metabolic activities together with the community analysis of the intestinal bacteria. Feed composition and processing have great potential to influence the activities of intestinal bacteria towards a desired direction in order to support animal health, well-being and microbial safety of broiler meat.  相似文献   

5.
6.
Rice straw fermentation using lactic acid bacteria   总被引:7,自引:0,他引:7  
To efficiently utilize rice straw and lessen its disposal problem on the environment, a lactic acid bacteria community, SFC-2 was developed from natural fermentation products of rice straw by continuous enrichment with the MRS-S broth (MRS broth with sucrose), and used to accelerate the fermentation of air-dried straws. The SFC-2 could rapidly lower the pH of the broth and produce high levels of lactic acid. Using a combination of plate isolation, denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing, the microbial composition of the SFC-2 was classified into Lactobacillus, mainly comprised of L. fermentum, L. plantarum and L. paracacei. An evaluation of the fermentation effect of SFC-2 on rice straw showed that it lowered the pH and significantly (P<0.05) increased lactic acid concentration in the straw. Further analysis with DGGE indicated that L. plantarum, L. fermentum and L. paracasei were the dominant species during fermentation.  相似文献   

7.
Hussuwa is a traditional Sudanese fermented food. Hussuwa made from Sorghum bicolor variety feterita exists in northern, central and eastern Sudan. The microbiological study indicated that the fermentation was primarily a lactic acid fermentation. The changes in microbial population, acetic acid bacteria, lactic acid bacteria and yeasts during all stages of hussuwa preparation and ripening were studied. The identification of fermented hussuwa microorganisms revealed that the main microorganisms were Lactobacillus saccharolyticum, Gluconobacter oxydans, Acetobacter xylinum and Saccharomyces cerevisiae. The metabolic products were studied in all stages of preparation and the period of ripening of hussuwa. The values of pH decreased as fermentation proceeded, and titratable acidity and volatile fatty acids increased.  相似文献   

8.
【背景】近年来芝麻香型白酒的生产工艺日臻成熟,然而相应的科学研究却没有同步发展起来。高通量测序技术越来越多地应用于物种多样性的研究,但偏重于研究物种的相对丰度,没有关注物种的生物数量。【目的】深度解析芝麻香型白酒发酵过程微生物群落结构变化及其与胁迫因子相关性,并研究主要酵母菌与细菌的相关性,为揭示芝麻香型白酒发酵机理和控制发酵质量提供理论支撑。【方法】使用Thermofisher的Ion S5~(TM)XL测序平台进行16S rDNA和ITS rDNA扩增子高通量测序,结合微生物传统的定量方法,测定芝麻香型白酒发酵过程微生物群落结构的变化,同时监测发酵过程乳酸、乙酸、乙醇的含量变化,通过样品复杂度分析、多样品比较分析、环境因子关联性分析探究发酵过程微生物群落及其与胁迫因子的关系。通过Pearson相关性分析酵母菌与细菌的相关性。【结果】发酵前期纤维素菌、魏斯氏菌和芽孢杆菌占主要优势,发酵中后期乳杆菌占绝对优势,其次是纤维素菌、魏斯氏菌和芽孢杆菌。整个发酵过程伊萨酵母占绝对优势,其次是维克霉菌、酿酒酵母、假丝酵母。大部分微生物与胁迫因子呈负相关,只有乳杆菌与乙酸呈极显著性正相关。酵母菌与部分细菌呈正相关性。【结论】白酒发酵过程胁迫因子和微生物间的相互作用促进了群落演替过程,发酵后期乳杆菌和芽孢杆菌发酵产酸抑制了大部分不耐酸菌,有机酸是影响群落结构变化的主要胁迫因子。微生物数量结合相对丰度揭示了发酵过程群落结构演替及其与环境因子相关性的更多信息。  相似文献   

9.
[背景]青稞酒是一个多菌种固态发酵的产物,解析发酵过程中重要的功能微生物及其代谢特征对调控青稞酒发酵具有重要作用。[目的]揭示青稞酒发酵过程中的风味功能微生物并解析其风味代谢特征。[方法]基于高通量测序技术揭示青稞酒发酵过程中的微生物群落多样性和组成;采用顶空固相微萃取结合气相色谱-质谱技术跟踪酒醅的风味信息;通过微生物属与风味物质的关联分析揭示青稞酒发酵过程中风味功能微生物菌群,并采用蒙特卡洛检验分析进一步揭示发酵过程理化因子对风味功能微生物菌群的影响;于实验室环境下重构6株微生物发酵体系,以揭示其风味代谢特征。[结果]青稞酒发酵过程中9个真菌属和8个细菌属(相对丰度>1%)占据优势,其中Aspergillus、Komagataella、Lactobacillus、Pichia、Saccharomyces和Weissella是青稞酒发酵过程主要风味功能微生物;发酵过程中还原糖(r2=0.946 9,P=0.013 2)和酸度(r2=0.847 6,P=0.048 6)是驱动风味功能微生物菌群演替的关键因子;6株菌的组合发酵实验揭示了体外系统与原位系统具有相同的微生物演替现象与相...  相似文献   

10.
Anaerobic fermentation by an open mixed culture was investigated at different pH values (4–8.5) and with three substrates (glucose, glycerol and xylose). The populations established in each condition were assessed by denaturing gradient gel electrophoresis analysis of the 16S ribosomal RNA gene fragments. The fermentation pattern and the composition of the microbial population were also evaluated when operational variations were imposed (increase of substrate concentration or introduction of a second substrate). The experimental results demonstrated that at low and high pH values, a clearly different fermentation pattern was associated with the dominance of a specialised group of clostridiae. At intermediate pH values, the product spectrum was rather variable and seemed to be sensitive to variations in the microbial community. Different substrates resulted in the establishment of different microbial communities. When fed with a mixture of two substrates, mixotrophic microorganisms (capable of degrading both substrates) were found to overgrow the originally dominant specialists. Overall, the experiments have shown that some operational variables have a clear impact on the fermentation pattern and on the population established. However, a uniform relationship between the process characteristics (associated to a metabolic response) and the microbial population present is not always possible. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The diversity of populations of yeast and lactic acid bacteria (LAB) in pig feeds fermented at 10, 15, or 20 degrees C was characterized by rRNA gene sequencing of isolates. The feeds consisted of a cereal grain mix blended with wet wheat distillers' grains (WWDG feed), whey (W feed), or tap water (WAT feed). Fermentation proceeded for 5 days without disturbance, followed by 14 days of daily simulated feed outtakes, in which 80% of the contents were replaced with fresh feed mixtures. In WWDG feed, Pichia galeiformis became the dominant yeast species, independent of the fermentation temperature and feed change. The LAB population was dominated by Pediococcus pentosaceus at the start of the fermentation period. After 3 days, the Lactobacillus plantarum population started to increase in feeds at all temperatures. The diversity of LAB increased after the addition of fresh feed components. In W feed, Kluyveromyces marxianus dominated, but after the feed change, the population diversity increased. With increasing fermentation temperatures, there was a shift toward Pichia membranifaciens as the dominant species. L. plantarum was the most prevalent LAB in W feed. The WAT feed had a diverse microbial flora, and the yeast population changed throughout the whole fermentation period. Pichia anomala was the most prevalent yeast species, with increasing occurrence at higher fermentation temperatures. Pediococcus pentosaceus was the most prevalent LAB, but after the feed change, L. plantarum started to proliferate. The present study demonstrates that the species composition in fermented pig feed may vary considerably, even if viable cell counts indicate stable microbial populations.  相似文献   

12.
烟叶陈化过程可培养微生物的生态功能   总被引:1,自引:0,他引:1  
【背景】烟叶陈化涉及多方面因素的相互作用。【目的】研究烟叶表面可培养微生物群落结构、功能和化学成分之间的联系。【方法】以储存于贵阳库、坛厂库、茅台库的烟叶为研究对象,分别对不同陈化时间的烟叶样品进行微生物分离,采用rDNA条形码技术对微生物优势菌株进行物种鉴定,利用FAPROTAX和FUNGuild数据库分别对细菌和真菌进行功能注释,并结合主要化学成分进行相关分析。【结果】243个烟叶样品中共分离到189株优势细菌菌株和229株优势真菌菌株,其中细菌以芽孢杆菌属(Bacillus)为优势种群,真菌以曲霉属(Aspergillus)和青霉属(Penicillium)为优势种群。随着陈化时间的延长,优势种群和优势功能类群比例逐渐降低,主要化学成分与微生物群落变化呈显著相关关系。【结论】微生物功能群通过结构变化推动烟叶陈化进程,同时陈化过程中主要化学成分的变化影响了微生物群落的组成与功能。  相似文献   

13.
This study was performed to examine the use of NaOCl as an alternative antimicrobial compound in winemaking because of the potential health problems that may arise as a result of the use of SO2. For this, the blank (non-treated), control (SO2-added), and sample (NaOCl-treated) wines were made, and microbial and chemical changes including sensory characteristics were analyzed during the fermentation periods. Treatment of grapes with NaOCl decreased the initial contaminating microbial population in grape must, resulting in higher growth of yeast and lactic acid bacteria. After 200 days of fermentation, the chemical analysis of sample wine revealed that it had higher ethanol content, redness (a*), and concentrations of fruity ester compounds and lower total acidity than the control. In the sensory analyses, the sample wine obtained a higher overall acceptability score (5.70) than the control (4.26). This result reveals that NaOCl can be used as an alternative to SO2 in winemaking for inhibiting the growth of contaminating microorganisms.  相似文献   

14.
Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in the early period of the fermentation and, thereafter, tended to the stabilization in the mid-late periods. This study gave us important clues to understand the fermentation process and can serve as a foundation for improving the quality of soy sauce in the future.  相似文献   

15.
Wine quality is closely linked to the fermentation step, which is driven by the microbial ecology of grape and the use of selected microbial strains as well. The microbial species developing during fermentation determines the type and concentration of many substances, which contribute to the sensory properties of wine and its safety. In this view, the present work aims to characterise the yeast microbiota, chemical and sensory properties of Sangiovese red wines obtained from both biodynamic and organic agriculture. The natural yeast populations of grape musts and their evolution during spontaneous were monitored and investigated. In addition, the volatile composition, physico-chemical and safety features (ethyl-carbamate) and sensory properties of wines were evaluated. The results showed that the yeast population was mostly related to the grape management, i.e. organic or biodynamic, while the wine composition was mainly affected by the winemaking process, and then by the grape management.  相似文献   

16.
液质发酵食品发酵过程中微生物组成复杂,复杂的微生物发酵体系会影响微生物的生长和代谢,继而改变微生物的群落结构与功能,最终影响液质发酵食品的品质.乳酸菌在食品发酵中对形成风味物质、提高营养价值、抑制腐败菌生长具有重要的作用.本文主要对近年来食醋、酱油和饮料酒等液质发酵食品中微生物群落及与乳酸菌间相互作用关系进行综述,了解...  相似文献   

17.
Cocoa bean fermentation is a spontaneous process involving a succession of microbial activities, starting with yeasts, followed by lactic acid bacteria and acetic acid bacteria. So far, all microbiological studies about cocoa bean fermentation were based on culture-dependent (isolation, cultivation, and identification), or, more recently, culture-independent (PCR-DGGE, or polymerase chain reaction denaturing gradient gel electrophoresis) methods. Using a metagenomic approach, total DNA was extracted from heap and box fermentations at different time points and from different locations (Ghana and Brazil, respectively) to generate a 16 S rDNA clone library that was sequenced. The sequencing data revealed a low bacterial diversity in the fermentation samples and were in accordance with the results obtained through culture-dependent and a second, culture-independent analysis (PCR-DGGE), suggesting that almost all bacteria involved in the fermentation process are cultivable. One exception was the identification by 16 S rDNA library sequencing of Gluconacetobacter species of acetic acid bacteria that were not detected by the two other approaches. The presence of Enterobacteriaceae related to Erwinia/Pantoea/Tatumella, as revealed by 16 S rDNA library sequencing, suggests an impact of these bacteria on fermentation.  相似文献   

18.
Yun  Jianmin  Zhao  Fengqin  Zhang  Wenwei  Yan  Haijiao  Zhao  Fengyun  Ai  Duiyuan 《Annals of microbiology》2019,69(3):279-289

This study reveals the microbial community succession and diversity during the whole solid-fermentation processes of naturally fermented Liangzhou fumigated vinegar (LZFV). Dynamics and diversity of microbial community succession in “Daqu” starter and other fermentation stages (starch saccharification, alcoholic fermentation, and acetic acid fermentation) were monitored using a metagenomic approach involving high-throughput sequencing. Meanwhile, dynamic changes of characteristic flavor compounds of vinegar were determined by gas chromatograph (GC) analysis. The result showed that the microbiota composition exhibited rich diversity. Twenty-five bacterial and 18 fungal genera were found in the whole fermentation process where Lactobacillus, Acetobacter, Aspergillus, Saccharomyces, and Alternaria were the predominant microorganisms. Alpha diversity metrics showed that bacterial diversity in Daqu was greater than that in AF and AAF. By contrast, fungal diversity increased from Daqu to AF and decreased in the initial stage (5–8 days) of AAF then remained relatively steady. Hence, these results could help understand dynamics of microbial community succession in continuous fermentation of traditional Chinese vinegars. The LZFV fermentation is a continuous process with spontaneous growth that affects the dynamics of microbial communities. Continuous changes of micro-environment conditions in substrate affect the diversity and structure of microbiota. Microbial growth and metabolism were closely related to the changes in the physicochemical characteristics of the cultures. The microbial flora composition showed rich diversity, and with the increase in brewing time and the change in micro-ecological environmental conditions; the microbial community showed a complex dynamic changes.

  相似文献   

19.
Fermentation capacity of microbial ecosystems intrinsically depends on substrate supply and the ability of a microbial community to deliver monomers for fermentation. In established microbial ecosystems, the microbial community is adapted to efficiently degrade and ferment available biopolymers which is often concurrently reflected in the richness of the microbial community and its functional potential. During the first year of life, the human gut microbial environment is a rather dynamic system that is characterized by a change in physiological conditions (e.g. from aerobic to anaerobic conditions, physical growth of the gastrointestinal tract, development of the intestinal immune system) but also by a change in nutrient supply from a compositionally limited liquid to a diverse solid diet, which demands major compositional and functional changes of the intestinal microbiota. How these transitions link to intestinal microbial fermentation capacity has gained comparatively little interest so far. This mini-review aims to collect evidence that already after birth, there is seeding of a hidden population of various fermentation organisms which remain present at low abundance until the cessation of breastfeeding removes nutritional restrictions of a liquid milk-based diet. The introduction of solid food containing plant and animal material is accompanied by an altering microbiota. The concurrent increases in the abundance of degraders and fermenters lead to higher intestinal fermentation capacity indicated by increased faecal levels of the final fermentation metabolites propionate and butyrate. Recent reports indicate that the development of fermentation capacity is an important step during gut microbiota development, as chronic disorders such as allergy and atopic dermatitis have been linked to lower degradation and fermentation capacity indicated by reduced levels of final fermentation metabolites at 1 year of age.  相似文献   

20.
In the container habitats of immature mosquitoes, catabolism of plant matter and other organic detritus by microbial organisms produces metabolites that mediate the oviposition behavior of Aedes aegypti and Aedes albopictus. Public health agencies commonly use oviposition traps containing plant infusions for monitoring populations of these mosquito species, which are global vectors of dengue viruses. In laboratory experiments, gravid females exhibited significantly diminished responses to experimental infusions made with sterilized white oak leaves, showing that attractive odorants were produced through microbial metabolic activity. We evaluated effects of infusion concentration and fermentation time on attraction of gravid females to infusions made from senescent bamboo or white oak leaves. We used plate counts of heterotrophic bacteria, total counts of 4′,6-diamidino-2-phenylindole-stained bacterial cells, and 16S ribosomal DNA (rDNA) polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) to show that changes in the relative abundance of bacteria and the species composition of bacterial communities influenced attraction of gravid A. aegypti and A. albopictus mosquitoes to infusions. DGGE profiles showed that bacterial species composition in infusions changed over time. Principal components analysis indicated that oviposition responses to plant infusions were in general most affected by bacterial diversity and abundance. Analysis of bacterial 16S rDNA sequences derived from DGGE bands revealed that Proteobacteria (Alpha-, Beta-, Delta-, and Gamma-) were the predominant bacteria detected in both types of plant infusions. Gravid A. aegypti were significantly attracted to a mix of 14 bacterial species cultured from bamboo leaf infusion. The oviposition response of gravid mosquitoes to plant infusions is strongly influenced by abundance and diversity of bacterial species, which in turn is affected by plant species, leaf biomass, and fermentation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号