首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins varied in their minimal DNA-binding sites and nucleotide recognition properties. Green alga POT1 exhibited a strong preference for the canonical plant telomere repeat sequence TTTAGGG with no detectable binding to hexanucleotide telomere repeat TTAGGG found in vertebrates and some plants, including Asparagus. In contrast, POT1 proteins from maize and Asparagus bound TTAGGG repeats with only slightly reduced affinity relative to the TTTAGGG sequence. We conclude that the nucleic acid binding site in plant POT1 proteins is evolving rapidly, and that the recent acquisition of TTAGGG telomere repeats in Asparagus appears to have co-evolved with changes in POT1 DNA sequence recognition.  相似文献   

2.
3.
We screened maize (Zea mays) cDNAs for sequences similar to the single myb-like DNA-binding domain of known telomeric complex proteins. We identified, cloned, and sequenced five full-length cDNAs representing a novel gene family, and we describe the analysis of one of them, the gene Single myb histone 1 (Smh1). The Smh1 gene encodes a small, basic protein with a unique triple motif structure of (a) an N-terminal SANT/myb-like domain of the homeodomain-like superfamily of 3-helical-bundle-fold proteins, (b) a central region with homology to the conserved H1 globular domain found in the linker histones H1/H5, and (c) a coiled-coil domain near the C terminus. The Smh-type genes are plant specific and include a gene family in Arabidopsis and the PcMYB1 gene of parsley (Petroselinum crispum) but are distinct from those (AtTRP1, AtTBP1, and OsRTBP1) recently shown to encode in vitro telomere-repeat DNA-binding activity. The Smh1 gene is expressed in leaf tissue and maps to chromosome 8 (bin 8.05), with a duplicate locus on chromosome 3 (bin 3.09). A recombinant full-length SMH1, rSMH1, was found by band-shift assays to bind double-stranded oligonucleotide probes with at least two internal tandem copies of the maize telomere repeat, TTTAGGG. Point mutations in the telomere repeat residues reduced or abolished the binding, whereas rSMH1 bound nonspecifically to single-stranded DNA probes. The two DNA-binding motifs in SMH proteins may provide a link between sequence recognition and chromatin dynamics and may function at telomeres or other sites in the nucleus.  相似文献   

4.
5.
Quantifying DNA-protein interactions by double-stranded DNA arrays.   总被引:12,自引:0,他引:12  
We have created double-stranded oligonucleotide arrays to perform highly parallel investigations of DNA-protein interactions. Arrays of single-stranded DNA oligonucleotides, synthesized by a combination of photolithography and solid-state chemistry, have been used for a variety of applications, including large-scale mRNA expression monitoring, genotyping, and sequence-variation analysis. We converted a single-stranded to a double-stranded array by synthesizing a constant sequence at every position on an array and then annealing and enzymatically extending a complementary primer. The efficiency of second-strand synthesis was demonstrated by incorporation of fluorescently labeled dNTPs (2'-deoxyribonucleoside 5'-triphosphates) and by terminal transferase addition of a fluorescently labeled ddNTP. The accuracy of second-strand synthesis was demonstrated by digestion of the arrayed double-stranded DNA (dsDNA) on the array with sequence-specific restriction enzymes. We showed dam methylation of dsDNA arrays by digestion with DpnI, which cleaves when its recognition site is methylated. This digestion demonstrated that the dsDNA arrays can be further biochemically modified and that the DNA is accessible for interaction with DNA-binding proteins. This dsDNA array approach could be extended to explore the spectrum of sequence-specific protein binding sites in genomes.  相似文献   

6.
Rap1p, the major telomere repeat binding protein in yeast, has been implicated in both de novo telomere formation and telomere length regulation. To characterize the role of Rap1p in these processes in more detail, we studied the generation of telomeres in vivo from linear DNA substrates containing defined arrays of Rap1p binding sites. Consistent with previous work, our results indicate that synthetic Rap1p binding sites within the internal half of a telomeric array are recognized as an integral part of the telomere complex in an orientation-independent manner that is largely insensitive to the precise spacing between adjacent sites. By extending the lengths of these constructs, we found that several different Rap1p site arrays could never be found at the very distal end of a telomere, even when correctly oriented. Instead, these synthetic arrays were always followed by a short ( approximately 100-bp) "cap" of genuine TG repeat sequence, indicating a remarkably strict sequence requirement for an end-specific function(s) of the telomere. Despite this fact, even misoriented Rap1p site arrays promote telomere formation when they are placed at the distal end of a telomere-healing substrate, provided that at least a single correctly oriented site is present within the array. Surprisingly, these heterogeneous arrays of Rap1p binding sites generate telomeres through a RAD52-dependent fusion resolution reaction that results in an inversion of the original array. Our results provide new insights into the nature of telomere end capping and reveal one way by which recombination can resolve a defect in this process.  相似文献   

7.
Msbp-1 is a minisatellite-specific DNA-binding protein. Using synthetic binding substrates, we now show that Msbp-1 binds not to double-stranded DNA, but exclusively to single-stranded DNA. Binding is specific to the guanine-rich strand of the minisatellite duplex, interactions with the cytosine-rich strand being undetectable by southwestern analysis. Furthermore, the binding site required for successful DNA-protein interactions appears to be two or more minisatellite repeat units. We have also isolated, by whole-genome PCR and cloning, one Msbp-1 binding site from the human genome. Again, the binding strand of this molecule contains a repetitive G-rich structure equivalent to that of a small minisatellite. These observations are discussed with respect to other single-stranded DNA-binding proteins known to play a role in recombination processes.  相似文献   

8.
Sun L  Rush J  Ghosh I  Maunus JR  Xu MQ 《BioTechniques》2004,37(3):430-6, 438, 440 passim
Peptide arrays are increasingly used to define antibody epitopes and substrate specificities of protein kinases. Their use is hampered, however, by ineffective and variable binding efficiency of peptides, which often results in low sensitivity and inconsistent results. To overcome these limitations, we have developed a novel method for making arrays of synthetic peptides on various membranes after ligating the peptide substrates to an intein-generated carrier protein. We have conducted screening for optimal carrier proteins by immunoreactivity and direct assessment of binding using a peptide derivatized at a lysine sidechain with fluorescein, CDPEK(fluorescein)DS. Ligation of a synthetic peptide antigen to a carrier protein, HhaI methylase, resulted in an improved retention of peptides and an increased sensitivity of up to 10(4)-fold in immunoassay- and epitope-scanning experiments. Denaturing the ligation products with 2% sodium dodecyl sulfate (SDS) or an organic solvent (20% methanol) prior to arraying did not significantly affect the immunoreactivity of the HhaI methylase-peptide product. Because the carrier protein dominates the binding of ligation products and contains one peptide reactive site, the amount of peptide arrayed onto the membranes can be effectively normalized. This technique was utilized in the alanine scanning of hemagglutinin (HA) antigen using two monoclonal antibodies, resulting in distinguishing the different antigen epitope profiles. Furthermore, we show that this method can be used to characterize the antibodies that recognize phosphorylated peptides. This novel approach allows for synthetic peptides to be uniformly arrayed onto membranes, compatible with a variety of applications.  相似文献   

9.
E. A. Zimmer  E. R. Jupe    V. Walbot 《Genetics》1988,120(4):1125-1136
We have examined the structure of nuclear genes coding for ribosomal RNAs in maize and its wild relatives, the teosintes and Tripsacum. Digestion of the rDNA (genes coding for 18S, 5.8S and 26S RNAs) with 15 restriction endonucleases (with six base pair recognition sites) yields essentially a single map for the approximately 10,000 repeat units within an individual plant or species. Both length and site variation were detected among species and were concentrated in the intergenic spacer region of the rDNA repeat unit. This result is in agreement with patterns of rDNA change observed among wheat and its relatives (Triticeae), and among vertebrate species. Digestion of these nuclear DNAs with BamHI and subsequent hybridization with a 5S RNA gene-specific probe allowed determination of the size of the 5S gene repeat unit in maize, teosintes, and Tripsacum. Groupings in the genus Zea were characterized by distinct repeat unit types five Tripsacum species examined shared a 260 base pair major repeat unit type. Additionally, several other restriction endonuclease cleavage patterns differentiated among the 5S DNAs within the genus Zea. The rDNA and 5S DNA restriction site variation among the species can be interpreted phylogenetically and agrees with biochemical, karyotypic, and morphological evidence that places maize closest to the Mexican teosintes. For both gene arrays, contributions from each parental genome can be detected by restriction enzyme analysis of progeny from crosses between maize and two distantly related teosintes, Zea luxurians or Zea diploperennis, but certain teosinte arrays were underrepresented in some of the hybrids.  相似文献   

10.
SPKK, a new nucleic acid-binding unit of protein found in histone.   总被引:30,自引:6,他引:24       下载免费PDF全文
M Suzuki 《The EMBO journal》1989,8(3):797-804
A new DNA-binding unit of a protein different from the alpha-helix, the beta-sheet and the Zn-finger is proposed based on the analysis of the structure of the N-terminus of sea urchin spermatogenous histone H1. DNA-binding arms of the sea urchin spermatogenous histones, H1 and H2B, are composed of repeats of Ser-Pro-Lys(Arg)-Lys(Arg) (SPKK) residues. A six-times repeat of SPKK (S6 peptide) was isolated from H1 and the competition of S6 for DNA binding with a DNA-binding dye, Hoechst 33258, was analysed. The S6 peptide is shown to be a competitive inhibitor of Hoechst 33258, and it is concluded that the SPKK repeat binds to DNA in its minor groove with a binding constant, KS6 = 1.67 X 10(10) M-1. The circular dichroism (CD) spectrum of a synthetic peptide, SPRKSPRK (S2 peptide), is quite different from those of both the alpha-helix and the beta-sheet and resembles that of a random coil. From statistical consideration of protein structures it is proposed that SPKK forms a compact beta-turn stabilized by an additional hydrogen bond. Since a repeated chain of such turn of SPKK offers a repeat of amides of Ser residues at a distance similar to that of DNA-binding amides of the drugs, Hoechst 33258 and netropsin, and since the amides of these drugs bind to DNA replacing the spine of hydration in a minor groove, it is proposed that a repeat of SPKK binds to DNA in the minor groove using similar hydrogen bonds.  相似文献   

11.
12.
13.
14.
15.
16.
Several plant mitochondrial genomes contain repeated sequences that are postulated to be sites of homologous intragenomic recombination (1-3). In this report, we have used filter hybridizations to investigate sequence relationships between the cloned mitochondrial DNA (mtDNA) recombination repeats from turnip, spinach and maize and total mtDNA isolated from thirteen species of angiosperms. We find that strong sequence homologies exist between the spinach and turnip recombination repeats and essentially all other mitochondrial genomes tested, whereas a major maize recombination repeat does not hybridize to any other mtDNA. The sequences homologous to the turnip repeat do not appear to function in recombination in any other genome, whereas the spinach repeat hybridizes to reiterated sequences within the mitochondrial genomes of wheat and two species of pokeweed that do appear to be sites of recombination. Thus, although intragenomic recombination is a widespread phenomenon in plant mitochondria, it appears that different sequences either serve as substrates for this function in different species, or else surround a relatively short common recombination site which does not cross-hybridize under our experimental conditions. Identified gene sequences from maize mtDNA were used in heterologous hybridizations to show that the repeated sequences implicated in recombination in turnip and spinach/pokeweed/wheat mitochondria include, or are closely linked to genes for subunit II of cytochrome c oxidase and 26S rRNA, respectively. Together with previous studies indicating that the 18S rRNA gene in wheat mtDNA is contained within a recombination repeat (3), these results imply an unexpectedly frequent association between recombination repeats and plant mitochondrial genes.  相似文献   

17.
18.
A thin layered agarose film on microscope slides provides a versatile support for the preparation of arrayed molecular libraries. An activation step leading to the formation of aldehyde groups in the agarose creates reactive sites that allow covalent immobilization of molecules containing amino groups. Arrays of oligonucleotides and PCR products were prepared by tip printing. After hybridization with complementary fluorescence labeled nucleic acid probes strong fluorescence signals of sequence-specific binding to the immobilized probes were detected. The intensity of the fluorescence signals was proportional to the relative amount of immobilized oligonucleotides and to the concentration of the fluorescence labeled probe. We also used the agarose film-coated slides for the preparation of protein arrays. In combination with specific fluorescence labeled antibodies these protein arrays can be used for fluorescence linked immune assays. With this approach different protein tests can be performed in parallel in a single reaction with minimal amounts of the binding reagents.  相似文献   

19.
The evolutionary origins of microsatellites are not well understood. Some investigators have suggested that point mutations that expand repeat arrays beyond a threshold size trigger microsatellites to become variable. However, little empirical data has been brought forth on this and related issues. In this study, we examine the evolutionary history of microsatellites in six species within the obscura group of Drosophila, tracing changes in microsatellite alleles using both PCR product size and sequence data. We found little evidence supporting a general role of point mutations triggering initial microsatellite expansion, and no consistent threshold size for expansion was observed. Flanking region length variation was extensive when alleles were sequenced in distantly related species, and some species possessed altogether different repeat arrays between the same primer binding sites. Our results suggest extreme caution in using microsatellite allele sizes for phylogenetic analyses or to infer divergences between populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号