首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C(4) photosynthesis is a fascinating example of parallel evolution of a complex trait involving multiple genetic, biochemical and anatomical changes. It is seen as an adaptation to deleteriously high levels of photorespiration. The current scenario for C(4) evolution inferred from grasses is that it originated subsequent to the Oligocene decline in CO(2) levels, is promoted in open habitats, acts as a pre-adaptation to drought resistance, and, once gained, is not subsequently lost. We test the generality of these hypotheses using a dated phylogeny of Amaranthaceae s.l. (including Chenopodiaceae), which includes the largest number of C(4) lineages in eudicots. The oldest chenopod C(4) lineage dates back to the Eocene/Oligocene boundary, representing one of the first origins of C(4) in plants, but still corresponding with the Oligocene decline of atmospheric CO(2). In contrast to grasses, the rate of transitions from C(3) to C(4) is highest in ancestrally drought resistant (salt-tolerant and succulent) lineages, implying that adaptation to dry or saline habitats promoted the evolution of C(4); and possible reversions from C(4) to C(3) are apparent. We conclude that the paradigm established in grasses must be regarded as just one aspect of a more complex system of C(4) evolution in plants in general.  相似文献   

2.
Grasses using the C4 photosynthetic pathway dominate grasslands and savannahs of warm regions, and account for half of the species in this ecologically and economically important plant family. The C4 pathway increases the potential for high rates of photosynthesis, particularly at high irradiance, and raises water-use efficiency compared with the C3 type. It is therefore classically viewed as an adaptation to open, arid conditions. Here, we test this adaptive hypothesis using the comparative method, analysing habitat data for 117 genera of grasses, representing 15 C4 lineages. The evidence from our three complementary analyses is consistent with the hypothesis that evolutionary selection for C4 photosynthesis requires open environments, but we find an equal likelihood of C4 evolutionary origins in mesic, arid and saline habitats. However, once the pathway has arisen, evolutionary transitions into arid habitats occur at higher rates in C4 than C3 clades. Extant C4 genera therefore occupy a wider range of drier habitats than their C3 counterparts because the C4 pathway represents a pre-adaptation to arid conditions. Our analyses warn against evolutionary inferences based solely upon the high occurrence of extant C4 species in dry habitats, and provide a novel interpretation of this classic ecological association.  相似文献   

3.
Characteristics of photosynthetic light and CO2 use efficiency from seedling to heading stage, and C4 pathway enzyme activities in both flag leaves and lemma were compared between two newly developed super-rice hybrids (Oryza sativa L.), Liangyoupeijiu and Hua-an 3, and a traditional rice hybrid, Shanyou 63. At seedling and tillering stages, Liangyoupeijiu and Hua-an 3 had higher net photosynthetic rates (Pn) and light saturated assimilation rates (Asat) than did Shanyou 63, at both normal (360 micromol mol(-1)) and doubled (720 micromol mol(-1)) CO2 concentrations. At the heading stage, the flag leaves of all three rice hybrids had similar Pn and Asat. However, the two super-rice hybrids had higher apparent quantum yield (AQY) and carboxylation efficiency (CE) during all three typical developmental stages, and higher quantum yield of CO2 fixation (PhiCO2) at the tillering and heading stages. In addition, Liangyoupeijiu showed significantly higher activities of the C(4) pathway enzymes in both flag leaves and lemmas than did Shanyou 63. As a result, flag leaves of the two super-rice hybrids had higher Pn at morning, noontime and late afternoon during the daily cycle. Since most of the grain yield of rice comes from the photosynthesis of flag leaves, the similar Asat and much higher AQY, CE and PhiCO2 at heading stage of the two super-rice hybrids indicates that higher photosynthetic efficiency rather than higher photosynthetic capacity may be the primary factor contributing to their higher grain yields.  相似文献   

4.
Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

5.
To model the effect of increasing atmospheric CO2 on semi-arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open-top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 micro mol mol-1 CO2 (elevated CO2) in a semi-arid shortgrass steppe. Assimilation rate (A) and stomatal conductance (gs) at the treatment CO2 concentrations and at a range of intercellular CO2 concentrations and leaf water potentials (psileaf) were measured over 4 years with variable soil water content caused by season and CO2 treatment. Carboxylation efficiency of ribulose bisphosphate carboxylase/oxygenase (Vc,max), and ribulose bisphosphate regeneration capacity (Jmax) were reduced in P. smithii grown in elevated CO2, to the degree that A was similar in elevated and ambient CO2 (when soil moisture was adequate). Photosynthetic capacity was not reduced in B. gracilis under elevated CO2, but A was nearly saturated at ambient CO2. There were no stomatal adaptations independent of photosynthetic acclimation. Although photosynthetic capacity was reduced in P. smithii growing in elevated CO2, reduced gs and transpiration improved soil water content and psileaf in the elevated CO2 chambers, thereby improving A of both species during dry periods. These results suggest that photosynthetic responses of C3 and C4 grasses in this semi-arid ecosystem will be driven primarily by the effect of elevated CO2 on plant and soil water relations.  相似文献   

6.
Climate change and the evolution of C(4) photosynthesis   总被引:2,自引:0,他引:2  
Plants assimilate carbon by one of three photosynthetic pathways, commonly called the C(3), C(4), and CAM pathways. The C(4) photosynthetic pathway, found only among the angiosperms, represents a modification of C(3) metabolism that is most effective at low concentrations of CO(2). Today, C(4) plants are most common in hot, open ecosystems, and it is commonly felt that they evolved under these conditions. However, high light and high temperature, by themselves, are not sufficient to favor the evolution of C(4) photosynthesis at atmospheric CO(2) levels significantly above the current ambient values. A review of evidence suggests that C(4) plants evolved in response to a reduction in atmospheric CO(2) levels that began during the Cretaceous and continued until the Miocene.  相似文献   

7.
为了探讨CO2海底封存潜在的渗漏危险对于海洋生物的可能影响,以大型钙化藻类小珊瑚藻(Corallina pilulifera)为研究对象,在室内控光控温条件下,通过向培养海水充入CO2气体得到3种不同酸化程度的培养条件(pH 8.1、6.8和5.5),24h后比较藻体光合作用和钙化作用情况。结果显示:相对于自然海水培养条件(pH 8.1),在pH 6.8条件下培养的小珊瑚藻光合固碳速率得到了增强,而在pH 5.5条件下光合固碳速率则降低;随着酸化程度的增强,藻体的钙化固碳速率越来越低,在pH 5.5条件下甚至表现为负值[(-2.53±0.57)mg C g-1干重h-1];藻体颗粒无机碳(PIC)和颗粒有机碳(POC)含量的比值随着酸化程度的加强而降低,这反映了酸化对光合和钙化作用的综合效应。快速光反应曲线的测定结果显示:随着酸化程度的增强,强光引起的光抑制程度越来越强;在酸化条件下,藻体的光饱和点显著降低,但pH 6.8和5.5之间没有显著差异;低光下的电子传递速率在pH 8.1和6.8之间没有显著差异,pH 5.5培养条件下显著降低;最大电子传递速率在pH 6.8时最大,在pH 5.5时最低。以上结果说明,高浓度CO2引起的海水酸化显著地影响着小珊瑚藻的光合和钙化过程,不同的酸化程度下,藻体的光合、钙化反应不同,在较强的酸化程度下(pH 5.5),藻体的光合和钙化过程都将受到强烈的抑制,这些结果为认识CO2海底封存渗漏危险对海洋钙化藻类的可能影响提供了理论参考。  相似文献   

8.
A few species of Cymbopogon and Vetiveria are potentially important tropical grasses producing essential oils. In the present study, we report on the leaf anatomy and photosynthetic carbon assimilation in five species of Cymbopogon and Vetiveria zizanioides. Kranz-type leaf anatomy with a centrifugal distribution of chloroplasts and exclusive localization of starch in the bundle sheath cells were common among the test plants. Besides the Kranz leaf anatomy, these grasses displayed other typical C4 characteristics including a low (0–5 µl/l) CO2 compensation point, lack of light saturation of CO2 uptake at high photon flux densities, high temperature (35°C) optimum of net photosynthesis, high rates of net photosynthesis (55–67 mg CO2 dm-2 leaf area h-1), little or no response of net photosynthesis to atmospheric levels of O2 and high leaf 13C/12C ratios. The biochemical studies with 14CO2 indicated that the leaves of the above plant species synthesize predominantly malate during short term (5 s) photosynthesis. In pulse-chase experiments it was shown that the synthesis of 3-phosphoglycerate proceeds at the expense of malate, the major first formed product of photosynthesis in these plant species.  相似文献   

9.
The C(4) photosynthetic pathway involves the assimilation of CO(2) by phosphoenolpyruvate carboxylase (PEPC) and the subsequent decarboxylation of C(4) acids. The enzymes of the CO(2) concentrating mechanism could be affected under water deficit and limit C(4) photosynthesis. Three different C(4) grasses were submitted to gradually induced drought stress conditions: Paspalum dilatatum (NADP-malic enzyme, NADP-ME), Cynodon dactylon (NAD-malic enzyme, NAD-ME) and Zoysia japonica (PEP carboxykinase, PEPCK). Moderate leaf dehydration affected the activity and regulation of PEPC in a similar manner in the three grasses but had species-specific effects on the C(4) acid decarboxylases, NADP-ME, NAD-ME and PEPCK, although changes in the C(4) enzyme activities were small. In all three species, the PEPC phosphorylation state, judged by the inhibitory effect of L: -malate on PEPC activity, increased with water deficit and could promote increased assimilation of CO(2) by the enzyme under stress conditions. Appreciable activity of PEPCK was observed in all three species suggesting that this enzyme may act as a supplementary decarboxylase to NADP-ME and NAD-ME in addition to its role in other metabolic pathways.  相似文献   

10.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

11.
Summary Seedlings of nine tropical species varying in growth and carbon metabolism were exposed to twice the current atmospheric level of CO2 for a 3 month period on Barro Colorado Island, Panama. A doubling of the CO2 concentration resulted in increases in photosynthesis and greater water use efficiency (WUE) for all species possessing C3 metabolism, when compared to the ambient condition. No desensitization of photosynthesis to increased CO2 was observed during the 3 month period. Significant increases in total plant dry weight were also noted for 4 out of the 5 C3 species tested and in one CAM species, Aechmea magdalenae at high CO2. In contrast, no significant increases in either photosynthesis or total plant dry weight were noted for the C4 grass, Paspallum conjugatum. Increases in the apparent quantum efficiency (AQE) for all C3 species suggest that elevated CO2 may increase photosynthetic rate relative to ambient CO2 over a wide range of light conditions. The response of CO2 assimilation to internal Ci suggested a reduction in either the RuBP and/or Pi regeneration limitation with long term exposure to elevated CO2. This experiment suggests that: (1) a global rise in CO2 may have significant effects on photosynthesis and productivity in a wide variety of tropical species, and (2) increases in productivity and photosynthesis may be related to physiological adaptation(s) to increased CO2.  相似文献   

12.
开放式空气CO2浓度升高与作物/杂草的竞争关系   总被引:2,自引:2,他引:0  
曾青  朱建国 《应用生态学报》2002,13(10):1339-1343
CO2浓度升高对植物的光合作用、呼吸作用和水分利用等生理过程产生直接影响,进而影响植物的生长繁殖,CO2浓度升高对于具有C3光合途径的植物较具C4光合途径的植物更为有益,由于许多重要的杂草是C4植物,而许多重要的作用是C3植物,CO2浓度升高对杂草/作物的相互关系将有重要影响,本文就全球CO2浓度升高和气候变化对杂草/作物之间竞争关系影响进行综述,同时针对目前研究现状和可持续农业的需要,提出CO2学浓度升高条件下杂草/作物之间竞争关系及未来农田杂草治理方面理论与实践中有待解决的问题。  相似文献   

13.
Naidu SL  Long SP 《Planta》2004,220(1):145-155
Miscanthus × giganteus (Greef & Deuter ex Hodkinson & Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20°C or 14/11°C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (PSII) and the efficiency of CO2 assimilation (CO2) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased PSII/CO2. This in vivo analysis suggested that maintenance of high photosynthetic rates in M. × giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.  相似文献   

14.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

15.
16.
The effects on photosynthesis of CO2 and desiccation in Porphyra haitanensis were investigated to establish the effects of increased atmospheric CO2 on this alga during emersion at low tides. With enhanced desiccation, net photosynthesis, dark respiration, photosynthetic efficiency, apparent carboxylating efficiency and light saturation point decreased, while the light compensation point and CO2 compensation point increased. Emersed net photosynthesis was not saturated by the present atmospheric CO2 level (about 350?ml?m?3), and doubling the CO2 concentration (700?ml?m?3) increased photosynthesis by between 31% and 89% at moderate levels of desiccation. The relative enhancement of emersed net photosynthesis at 700?ml?m?3 CO2 was greater at higher temperatures and higher levels of desiccation. The photosynthetic production of Porphyra haitanensis may benefit from increasing atmospheric CO2 concentration during emersion.  相似文献   

17.
Inorganic carbon concentrating mechanisms (CCMs) catalyse the accumulation of CO(2) around rubisco in all cyanobacteria, most algae and aquatic plants and in C(4) and crassulacean acid metabolism (CAM) vascular plants. CCMs are polyphyletic (more than one evolutionary origin) and involve active transport of HCO(3)(-), CO(2) and/or H(+), or an energized biochemical mechanism as in C(4) and CAM plants. While the CCM in almost all C(4) plants and many CAM plants is constitutive, many CCMs show acclimatory responses to variations in the supply of not only CO(2) but also photosynthetically active radiation, nitrogen, phosphorus and iron. The evolution of CCMs is generally considered in the context of decreased CO(2) availability, with only a secondary role for increasing O(2). However, the earliest CCMs may have evolved in oxygenic cyanobacteria before the atmosphere became oxygenated in stromatolites with diffusion barriers around the cells related to UV screening. This would decrease CO(2) availability to cells and increase the O(2) concentration within them, inhibiting rubisco and generating reactive oxygen species, including O(3).  相似文献   

18.
The photosynthetic properties of a yellow lethal mutant, Oy/oy, and two yellow-green mutants of maize which are allelic (a homozygous recessive oy/oy and a heterozygous dominant Oy/+) were examined. Although Oy/oy had little or no chlorophyll or capacity for CO2 fixation compared to normal siblings, it had 28% as much ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) activity, and from 40% to near normal activities of C4 cycle enzymes.Both yellow-green mutants had only half as much chlorophyll per leaf area as normal green seedlings in greenhouse-grown plants in winter and spring. However, the absorbance of light by the mutants was relatively high, as their transmittance was only 5 to 8% greater than normal leaves. In winter-grown greenhouse plants, the activities of Rubisco and several C4 cycle enzymes in the mutants were unaffected and similar to those of normal seedlings on a leaf area basis. After allowing for small differences in leaf absorbance, the light response curves for photosynthesis in the mutants were similar on a leaf area basis but much higher on a chlorophyll basis than those of the normal seedlings. In spring-grown greenhouse plants the enzyme activities and photosynthesis rates were about 30% lower per leaf area in the yellow-green mutant leaves compared to the wild type. The maximum carboxylation efficiency (measured under low CO2 and 1000 mol quanta m-2 s-1) in the mutants and normal leaves was similar on a Rubisco protein basis. The results indicate that maize can undergo a 50% reduction in chlorophyll content without a corresponding reduction in enzymes of carbon assimilation, and still maintain a high capacity for photosynthesis.Abbreviations Chl chlorophyll - PEP phosphoenolypruvate - Rubisco ribulose-1,5-bisphosphate carboxylase oxygenase This research was supported by CSIRO and by USDA Competitive Grant 86-CRCR-1-2036.  相似文献   

19.
Summary The growth and photosynethetic responses to atmospheric CO2 enrichment of 4 species of C4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO2 enrichment would yield proportionally greater growth enhancement in the C4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 l 1-1 CO2 and 1,000 or 150 mol m-2 s-1 photosynthetic photon flux density (PPFD). An increase in CO2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO2. Plants grown in CO2-enriched atmosphere had lower photosynthetic capacity relative to the low CO2 grown plants when exposed to lower CO2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO2 compensation point for photosynthesis.  相似文献   

20.
The C4 pathway: an efficient CO2 pump   总被引:2,自引:0,他引:2  
The C4 pathway is a complex combination of both biochemical and morphological specialisation, which provides an elevation of the CO2 concentration at the site of Rubisco. We review the key parameters necessary to make the C4 pathway function efficiently, focussing on the diffusion of CO2 out of the bundle sheath compartment. Measurements of cell wall thickness show that the thickness of bundle sheath cell walls in C4 species is similar to cell wall thickness of C3 mesophyll cells. Furthermore, NAD-ME type C4 species, which do not have suberin in their bundle sheath cell walls, do not appear to compensate for this with thicker bundle sheath cell walls. Uncertainties in the CO2 diffusion properties of membranes, such as the plasmalemma, choroplast and mitochondrial membranes make it difficult to estimate bundle sheath diffusion resistance from anatomical measurements, but the cytosol itself may account for more than half of the final calculated resistance value for CO2 leakage. We conclude that the location of the site of decarboxylation, its distance from the mesophyll interface and the physical arrangement of chloroplasts and mitochondria in the bundle sheath cell are as important to the efficiency of the process as the properties of the bundle sheath cell wall. Using a mathemathical model of C4 photosynthesis, we also examine the relationship between bundle sheath resistance to CO2 diffusion and the biochemical capacity of the C4 photosynthetic pathway and conclude that bundle sheath resistance to CO2 diffusion must vary with biochemical capacity if the efficiency of the C4 pump is to be maintained. Finally, we construct a mathematical model of single cell C4 photosynthesis in a C3 mesophyll cell and examine the theoretical efficiency of such a C4 photosynthetic CO2 pump. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号