首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The phytohormone abscisic acid (ABA) regulates many key processes in plants, such as seed germina- tion, seedling growth, and abiotic stress tolerance. In recent years, a minimal set of core components of a major ABA signaling pathway has been discovered. These components include a RCAR/PYR/PYL family of ABA receptors, a group of PP2C phosphatases, and three SnRK2 kinases. However, how the interactions between the receptors and their targets are regulated by other proteins remains largely unknown. In a companion paper published in this issue, we showed that ROP11, a member of the plant- specific Rho-like small GTPase family, negatively regulates multiple ABA responses in Arabidopsis. The current work demonstrated that the constitutively active ROP11 (CA-ROP11) can modulate the RCAR1/PYL9-mediated ABA signaling pathway based on reconstitution assays in Arabidopsis thaliana protoplasts. Furthermore, using luciferase complementation imaging, yeast two-hybrid assays, co- immunoprecipitation assays in Nicotiana benthamiana and bimolecular fluorescence complementation assays, we demonstrated that CA-ROP11 directly interacts with ABI1, a signaling component downstream of RCAR1/PYL9. Finally, we provided biochemical evidence that CA-ROP11 protects ABI1 phosphatase activity from inhibition by RCAR1/PYL9 and thus negatively regulates ABA signaling in plant cells. A model of how ROP11 acts to negatively regulate ABA signaling is presented.  相似文献   

2.
Li Z  Liu D 《FEBS letters》2012,586(9):1253-1258
ROPs constitute a family of plant-specific, RHO-like small GTPases that serve as molecular switches in a wide range of signaling pathways. The activities of ROPs are regulated by guanine nucleotide exchange factors (GEFs). ROP11, a member of the ROP GTPase family in Arabidopsis, is a negative regulator of multiple ABA responses. In this study, we show that ROPGEF1 and ROPGEF4 interact with ROP11 on plasma membranes in guard cells. Furthermore, our analyses of ROPGEF1/4 knockout mutants and overexpressing lines suggested that ROPGEF1 and ROPGEF4 are specific regulators of ROP11 function in ABA-mediated stomatal closure.  相似文献   

3.
4.
Auxin and abscisic acid (ABA) are major plant hormones that act together to modulate numerous aspects of plant growth and development, including seed germination, primary root elongation, and lateral root formation. In this study, we analyzed the loss-of-function mutants of two closely related ROP (Rho of plants) GTPases, ROP9 and ROP10, and found that these ROP GTPases differentially regulate the auxin and ABA responses. rop9 and rop10 mutations enhanced the ABA-induced suppression of seed germination, primary root growth, and lateral root formation and the expression of ABA-responsive genes, whereas rop9 but not rop10 suppressed auxin-induced root phenotypes and auxin-responsive gene expression. These results suggest that both ROP9 and ROP10 function as negative regulators of ABA signaling, and that ROP9, but not ROP10, functions as a positive regulator of auxin signaling. Previously, ROPinteractive CRIB motif-containing protein 1 (RIC1) was reported to participate in auxin and ABA responses, and to have a similar effect as ROP9 and ROP10 on gene expression, root development, and seed germination. Because RIC proteins mediate ROP GTPase signaling, our results suggest that ROP9 and ROP10 GTPases function upstream of RIC1 in auxin- and ABA-regulated root development and seed germination.  相似文献   

5.
6.
7.
8.
Abscisic acid (ABA) is a key regulator of plant responses to abiotic stresses, such as drought. Abscisic acid receptors and coreceptors perceive ABA to activate Snf1-related protein kinase2s (SnRK2s) that phosphorylate downstream effectors, thereby activating ABA signaling and the stress response. As stress responses come with fitness penalties for plants, it is crucial to tightly control SnRK2 kinase activity to restrict ABA signaling. However, how SnRK2 kinases are inactivated remains elusive. Here, we show that NUCLEAR PORE ANCHOR (NUA), a nuclear pore complex (NPC) component, negatively regulates ABA-mediated inhibition of seed germination and post-germination growth, and drought tolerance in Arabidopsis thaliana. The role of NUA in response to ABA depends on SnRK2.2 and SnRK2.3 for seed germination and on SnRK2.6 for drought. NUA does not directly inhibit the phosphorylation of these SnRK2s or affects their abundance. However, the NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, negatively regulates ABA signaling by directly interacting with and inhibiting SnRK2 phosphorylation and protein levels. More importantly, we demonstrated that SnRK2.6 can be SUMOylated in vitro, and ESD4 inhibits its SUMOylation. Taken together, we identified NUA and ESD4 as SnRK2 kinase inhibitors that block SnRK2 activity, and reveal a mechanism whereby NUA and ESD4 negatively regulate plant responses to ABA and drought stress possibly through SUMOylation-dependent regulation of SnRK2s.  相似文献   

9.
10.
ABFs, a family of ABA-responsive element binding factors   总被引:47,自引:0,他引:47  
  相似文献   

11.
12.

In plants, abscisic acid (ABA)-mediated responses during abiotic stress, growth, and development have been well studied. Many chemicals which modulate ABA responses have been identified. In this study, we report that dithiothreitol (DTT), an inducer of endoplasmic reticulum (ER) stress, can overcome ABA-mediated responses in plants. In rice seedlings, combined treatment of ABA and DTT increased shoot growth compared to ABA alone. The phenotype correlated with the expression pattern of ABA and ER stress-responsive genes. In finger millet, increase in root growth was observed in combined treatment, compared to ABA treatment. Experiments using dimethyl sulfoxide indicated that the phenotype observed was specific to DTT. Priming of germinated rice seeds with DTT followed by salinity stress indicated that DTT can mask the ABA effect. In ABA bioassay using cotton petioles, an increase in intact petioles in combined treatment of ABA and DTT was observed compared to ABA treatment. The expression of OsWRKY48, an ABA-responsive gene, was down-regulated in combined treatment, indicating that the target of DTT-induced ER stress is upstream of OsWRKY48 in the ABA signaling pathway. The study demonstrated that DTT-induced ER stress can be a potential mechanism to regulate ABA-mediated responses in plants.

  相似文献   

13.
Calcium plays a pivotal role in plant responses to several stimuli, including pathogens, abiotic stresses, and hormones. However, the molecular mechanisms underlying calcium functions are poorly understood. It is hypothesized that calcium serves as second messenger and, in many cases, requires intracellular protein sensors to transduce the signal further downstream in the pathways. The calcineurin B-like proteins (CBLs) represent a unique family of calcium sensors in plant cells. Here, we report our analysis of the CBL9 member of this gene family. Expression of CBL9 was inducible by multiple stress signals and abscisic acid (ABA) in young seedlings. When CBL9 gene function was disrupted in Arabidopsis thaliana plants, the responses to ABA were drastically altered. The mutant plants became hypersensitive to ABA in the early developmental stages, including seed germination and post-germination seedling growth. In addition, seed germination in the mutant also showed increased sensitivity to inhibition by osmotic stress conditions produced by high concentrations of salt and mannitol. Further analyses indicated that increased stress sensitivity in the mutant may be a result of both ABA hypersensitivity and increased accumulation of ABA under the stress conditions. The cbl9 mutant plants showed enhanced expression of genes involved in ABA signaling, such as ABA-INSENSITIVE 4 and 5. This study has identified a calcium sensor as a common element in the ABA signaling and stress-induced ABA biosynthesis pathways.  相似文献   

14.
15.
16.
Jeon BW  Hwang JU  Hwang Y  Song WY  Fu Y  Gu Y  Bao F  Cho D  Kwak JM  Yang Z  Lee Y 《The Plant cell》2008,20(1):75-87
ROP small G proteins function as molecular switches in diverse signaling processes. Here, we investigated signals that activate ROP2 in guard cells. In guard cells of Vicia faba expressing Arabidopsis thaliana constitutively active (CA) ROP2 fused to red fluorescent protein (RFP-CA-ROP2), fluorescence localized exclusively at the plasma membrane, whereas a dominant negative version of RFP-ROP2 (DN-ROP2) localized in the cytoplasm. In guard cells expressing green fluorescent protein-ROP2, the relative fluorescence intensity at the plasma membrane increased upon illumination, suggesting that light activates ROP2. Unlike previously reported light-activated factors, light-activated ROP2 inhibits rather than accelerates light-induced stomatal opening; stomata bordered by guard cells transformed with CA-rop2 opened less than controls upon light irradiation. When introduced into guard cells together with CA-ROP2, At RhoGDI1, which encodes a guanine nucleotide dissociation inhibitor, inhibited plasma membrane localization of CA-ROP2 and abolished the inhibitory effect of CA-ROP2 on light-induced stomatal opening, supporting the negative effect of active ROP2 on stomatal opening. Mutant rop2 Arabidopsis guard cells showed phenotypes similar to those of transformed V. faba guard cells; CA-rop2 stomata opened more slowly and to a lesser extent, and DN-rop2 stomata opened faster than wild-type stomata in response to light. Moreover, in rop2 knockout plants, stomata opened faster and to a greater extent than wild-type stomata in response to light. Thus, ROP2 is a light-activated negative factor that attenuates the extent of light-induced changes in stomatal aperture. The inhibition of light-induced stomatal opening by light-activated ROP2 suggests the existence of feedback regulatory mechanisms through which stomatal apertures may be finely controlled.  相似文献   

17.
18.
19.
20.
The mechanisms that balance plant growth and stress responses are poorly understood, but they appear to involve abscisic acid (ABA) signaling mediated by protein kinases. Here, to explore these mechanisms, we examined the responses of Arabidopsis thaliana protein kinase mutants to ABA treatment. We found that mutants of BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) were hypersensitive to the effects of ABA on both seed germination and primary root growth. The kinase OPEN STOMATA 1 (OST1) was more highly activated by ABA in bak1 mutant than the wild type. BAK1 was not activated by ABA treatment in the dominant negative mutant abi1-1 or the pyr1 pyl4 pyl5 pyl8 quadruple mutant, but it was more highly activated by this treatment in the abi1-2 abi2-2 hab1-1 loss-of-function triple mutant than the wild type. BAK1 phosphorylates OST1 T146 and inhibits its activity. Genetic analyses suggested that BAK1 acts at or upstream of core components in the ABA signaling pathway, including PYLs, PP2Cs, and SnRK2s, during seed germination and primary root growth. Although the upstream brassinosteroid (BR) signaling components BAK1 and BR INSENSITIVE 1 (BRI1) positively regulate ABA-induced stomatal closure, mutations affecting downstream components of BR signaling, including BRASSINOSTEROID-SIGNALING KINASEs (BSKs) and BRASSINOSTEROID-INSENSITIVE 2 (BIN2), did not affect ABA-mediated stomatal movement. Thus, our study uncovered an important role of BAK1 in negatively regulating ABA signaling during seed germination and primary root growth, but positively modulating ABA-induced stomatal closure, thus optimizing the plant growth under drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号